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This dissertation presents two essays on econometric methods for program evaluation

and policy choice.

In Chapter 1, I develop a statistically optimal way of using data to make policy decisions

when the performance of counterfactual policies is only partially identified. Specifically, I

consider a class of statistical decision problems in which the policy maker must decide be-

tween two alternative policies to maximize social welfare (e.g., the population mean of an

outcome) based on a finite sample. The central assumption is that the underlying, possibly

infinite-dimensional parameter, lies in a known convex set, potentially leading to partial

identification of the welfare effect. An example of such restrictions is the smoothness of

counterfactual outcome functions. As the main theoretical result, I obtain a finite-sample

decision rule (i.e., a function that maps data to a decision) that is optimal under the minimax

regret criterion. This rule is easy to compute, yet achieves optimality among all decision

rules; no ad hoc restrictions are imposed on the class of decision rules. I then apply my

results to the problem of whether to change a policy eligibility cutoff in a regression dis-

continuity setup. I illustrate my approach in an empirical application to the Burkinabé

Response to Improve Girls’ Chances to Succeed program, a school construction program

in Burkina Faso, where villages were selected to receive schools based on scores computed

from their characteristics. Under reasonable restrictions on the smoothness of the counter-

factual outcome function, the optimal decision rule implies that it is not cost-effective to

expand the program. I empirically compare the performance of the optimal decision rule

with alternative decision rules.

In Chapter 2, joint with Yusuke Narita, we show how to use data obtained from al-

gorithmic decision making for impact evaluation. Machine learning and other algorithms

produce a growing portion of decisions and recommendations both in policy and in busi-

ness. This chapter first highlights a valuable aspect of such algorithmic decisions. That



is, algorithmic decisions are natural experiments (conditionally quasi-randomly assigned in-

struments) since the algorithms make decisions based only on observable input variables.

We then use this observation to develop a treatment-effect estimator for a class of stochastic

and deterministic decision-making algorithms. Our estimator is shown to be consistent and

asymptotically normal for well-defined causal effects. A key special case of our estimator is

a multidimensional regression discontinuity design. We apply our estimator to evaluate the

effect of the Coronavirus Aid, Relief, and Economic Security (CARES) Act, where hundreds

of billions of dollars worth of relief funding were allocated to hospitals via an algorithmic

rule. Our estimates suggest that the relief funding has little effect on COVID-19-related

hospital activity levels. Naive OLS and IV estimates exhibit substantial selection bias.
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Chapter 1

Optimal Decision Rules Under

Partial Identification

1.1 Introduction

A fundamental goal of empirical research in economics is to inform policy decisions. Evalua-

tion of counterfactual policies often requires extrapolating from observables to unobservables.

Without strong model restrictions such as functional form assumptions or exogeneity of an

intervention, the performance of each counterfactual policy may be only partially determined

by observed data. In such situations, policy decision making is challenging since we have no

clear understanding of which policy is the best.

For example, a regression discontinuity (RD) design only credibly estimates the impact of

treatment on the individuals at the eligibility cutoff. Therefore, without restrictive assump-

tions such as constant treatment effects, whether or not to offer the treatment to those away

from the cutoff is ambiguous. Even randomized controlled trials may provide only partial

knowledge of the impact of a new intervention, as can happen if participants do not perfectly

comply with their assigned treatment or if the experimental sample is an unrepresentative

subset of the target population.

This chapter develops an optimal way of using data to make policy decisions when the

performance of counterfactual policies is only partially identified. Specifically, I solve a class

1



of statistical decision problems. The setup is as follows. The policy maker must decide

between two alternative policies, policy 1 and policy 0, to maximize social welfare. The

difference in welfare between policy 1 and policy 0 is given by L(θ) ∈ R. L(·) is a linear

function of an unknown, possibly infinite-dimensional parameter θ, where θ belongs to a

known parameter space Θ. By construction, it is optimal to choose policy 1 if L(θ) ≥ 0 and

to choose policy 0 if L(θ) < 0. The policy maker makes a decision after observing a finite

sample (Y1, ..., Yn) ∈ Rn whose expected value is given by (m1(θ), ...,mn(θ)) ∈ Rn, where

mi(·)’s are linear functions of θ.

A leading example of this setup is a choice between two treatment assignment policies

based on data generated by nonparametric regression models, including an RD model. A

treatment assignment policy specifies who would receive treatment based on an individual’s

observable covariates. In this example, the parameter θ is a conditional mean function of

a counterfactual outcome given covariates and treatment. mi(θ) is the conditional mean

counterfactual outcome given individual i’s observed covariates and treatment. The welfare

difference L(θ) corresponds to the average treatment effect for the subpopulation that would

be affected by the switch from the status quo to a new policy. The parameter space Θ is a

class of conditional mean counterfactual outcome functions that satisfy, for example, some

smoothness restrictions (e.g., bounds on derivatives or the linearity of a function). The

welfare difference L(θ) may or may not be point identified, depending on which function

class the policy maker imposes.1

As the main theoretical result, I obtain a finite-sample decision rule (i.e., a function that

maps the sample (Y1, ..., Yn) to a probability of choosing policy 1) that is optimal under the

minimax regret criterion, a standard criterion used in the literature on statistical treatment

choice (e.g., Manski, 2004; Stoye, 2009; Kitagawa and Tetenov, 2018). The minimax regret

criterion evaluates decision rules based on the maximum regret, that is, the maximum of

the expected amount of welfare lost by choosing the worse policy over the parameter space.

The decision rule derived in this chapter minimizes the maximum regret over the class of all

decision rules. This optimality result holds whether the welfare difference L(θ) is point or

1. In Section 1.2.1, I will discuss what I mean by identification in this finite-sample setup.
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partially identified. To derive the optimality result, I assume that the sample (Y1, ..., Yn) is

normally distributed with a known variance and that the parameter space Θ is convex and

symmetric with respect to the origin, as well as mild regularity conditions.

Importantly, I do not impose any restrictions on the class of decision rules, thus allowing

for nonrandomized threshold rules based on a nonlinear function of the sample (Y1, ..., Yn)

and randomized rules, among others. Solving minimax problems over the class of all de-

cision rules is generally a difficult task. The main tool that I use to solve the minimax

regret problem is what is called the modulus of continuity (Donoho, 1994). The modulus of

continuity at ε ≥ 0 is the largest possible welfare difference over the parameter space under

the constraint that the Euclidean norm of the expected value of the sample (Y1, ..., Yn) is

at most ε, formally defined in Section 1.3. The minimax problem can be simplified into an

optimization problem with respect to the modulus of continuity, which is analytically and

computationally tractable.

The resulting decision rule is simple and thus easy to compute. It makes a decision

based on a linear function of (Y1, ..., Yn). The minimax regret rule may be randomized or

nonrandomized, depending on the restrictions imposed on the parameter space. Specifically,

it is a nonrandomized rule if the length of the identified set of the welfare difference L(θ)

is short relative to the variance of the sample (Y1, ..., Yn), including the case where L(θ) is

point identified. Otherwise, it is a randomized rule, assigning a positive probability both to

policies 1 and 0.

When the minimax regret rule is nonrandomized, it can be viewed as a rule that plugs a

particular linear estimator of the welfare difference L(θ) into the optimal decision 1{L(θ) ≥

0}. I compare this linear estimator with a linear minimax mean squared error (MSE)

estimator of L(θ), which minimizes the maximum of the MSE over the parameter space

within the class of all linear estimators. The two estimators are shown to be generally

different, which suggests that the plug-in rule based on the linear minimax MSE estimator

is not optimal under the minimax regret criterion. More precisely, the linear estimator

used by the minimax regret rule places more importance on the bias than on the variance

compared to the linear minimax MSE estimator.

This chapter makes new contributions even under point identification in settings with

3



restricted parameter spaces. When the welfare difference L(θ) is point identified, the min-

imax regret rule is insensitive to the choice of the restrictions imposed on the parameter

space as long as the restrictions are weak enough. For example, consider linear regression

models where mi(θ) = x′iθ, xi ∈ Rk is unit i’s fixed regressors, and θ ∈ Θ ⊂ Rk. The

minimax regret rule bases decisions on the sign of L(θ̂), where θ̂ is the best linear unbiased

estimator of θ, if the parameter space Θ is sufficiently large (e.g., if Θ = Rk). When the

restrictions on Θ become strong enough, the minimax regret rule starts to use an estimator

that optimally trades off the bias and variance.

I then apply my results to the problem of eligibility cutoff choice in an RD setup. In

many policy domains, the eligibility for treatment is determined based on an individual’s

observable characteristics. One crucial policy question is whether we should change the

eligibility criterion to achieve better outcomes (Dong and Lewbel, 2015). Specifically, I

consider an RD setup and study the problem of whether or not to change the eligibility

cutoff from a current value c0 to a new value c1. For an illustration of the results, I focus

on the case where the new value is smaller than the current one (i.e., c1 < c0) and the

conditional mean counterfactual outcome function belongs to the class of Lipschitz functions

with a known Lipschitz constant C. The absolute value of the derivative of any differentiable

function in this function class is bounded above by C. Under the Lipschitz constraint, the

effect of the cutoff change on the population mean outcome is partially identified.

A closed-form expression for the minimax regret rule can be obtained in this application

when the Lipschitz constant C is large enough. In such cases, the minimax regret rule is

based on the mean outcome difference between the treated unit closest to the status quo

cutoff c0 and the untreated units between the two cutoffs c0 and c1. On the other hand,

when C is not sufficiently large, the minimax regret rule may also use outcomes of other

units, although it does not generally admit a closed form. I provide a simple procedure to

numerically compute it for any choice of C.

Implementation of the minimax regret rule requires choosing the Lipschitz constant C.

In principle, it is not possible to choose the Lipschitz constant C that applies to both sides

of the status quo cutoff c0 in a data-driven way since we only observe outcomes either

under treatment or under no treatment on each side. It is, however, possible to estimate a
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lower bound on C. In practice, I recommend considering a range of plausible choices of C,

including the estimated lower bound, to conduct a sensitivity analysis.

Finally, I illustrate my approach in an empirical application to the Burkinabé Response

to Improve Girls’ Chances to Succeed (BRIGHT) program, a school construction program

in Burkina Faso (Kazianga, Levy, Linden and Sloan, 2013). Aiming to improve educational

outcomes in rural villages, the program constructed primary schools in 132 villages from 2005

to 2008. To allocate schools, the Ministry of Education first computed a score summarizing

village characteristics for each of the nominated 293 villages and then selected the highest-

ranking villages to receive a school. This situation fits into an RD setup.

I ask whether we should expand this program or not. The more specific question con-

sidered in this analysis is whether or not to construct schools in the top 20% of previously

ineligible villages. The analysis uses the enrollment rate as the welfare measure and assumes

that the conditional mean counterfactual outcome function belongs to the class of Lipschitz

functions with a known Lipschitz constant C. To consider policy costs, I assume that im-

plementing the policy is optimal if it is better in terms of cost-effectiveness than a similar

policy, whose cost-effectiveness is available from external studies. Given available estimates

of the new policy costs, my approach can be used to consider this decision problem. For a

plausible range of the Lipschitz constant C, the minimax regret rule implies that building

schools in the top 20% of previously ineligible villages is not cost-effective.

I empirically compare the minimax regret rule with plug-in decision rules that make a

decision according to the sign of a policy effect’s estimator. The performance of the minimax

regret rule is shown to be relatively robust to misspecification of the Lipschitz constant C

toward zero, which suggests that the potential loss due to an optimistic choice of C may not

be a major concern.

My approach is applicable to many other policy choice problems. One example is the

problem of deciding whether to introduce a new policy based on data from a randomized

experiment when the experiment has imperfect compliance or when the experimental sample

is a selected subset of the target population.
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1.1.1 Related Literature

This chapter contributes to the literature on statistical treatment choice, which has been

growing in econometrics since the work by Manski (2000, 2004). The literature has in-

tensively studied optimal treatment assignment based on covariates in settings where social

welfare under each policy is point identified (Manski, 2004; Dehejia, 2005; Hirano and Porter,

2009; Stoye, 2009, 2012; Bhattacharya and Dupas, 2012; Kitagawa and Tetenov, 2018, 2021;

Athey and Wager, 2021; Mbakop and Tabord-Meehan, 2021).2 In contrast, my approach can

be applied to this problem even with partial identification if the choice set consists of two

treatment assignment policies. Additionally, while many of the above papers provide finite-

sample regret bounds or asymptotic optimality results, I derive a finite-sample optimality

result.

This chapter is more closely related to the area of treatment choice under partial iden-

tification. In particular, Stoye (2012) and Ishihara and Kitagawa (2021) consider binary

treatment choice problems under Gaussian models and derive minimax regret rules. Stoye

(2012) provides a special case of my result in a setting where the experiment has imperfect

internal or external validity. Ishihara and Kitagawa (2021) consider the problem of deciding

whether or not to introduce a new policy to a specific local population based on causal

evidence of similar policies implemented in other populations. While they derive a minimax

regret rule within the class of plug-in rules based on a linear function of the sample, I derive

a minimax regret rule within the class of all decision rules. Other papers studying optimal

policy under partial identification include Manski (2007, 2009, 2010, 2011a,b, 2021), Kasy

(2016, 2018), Mo, Qi and Liu (2021), Russell (2020), Christensen, Moon and Schorfheide

(2020), and Kallus and Zhou (2021) among others.

The Gaussian model used in this chapter has been studied for the problem of optimal

estimation and inference in nonparametric regression models. Donoho (1994) uses the mod-

ulus of continuity to characterize minimax optimal estimators and confidence intervals on

linear functionals of a regression function. The derivation of my result and that of Donoho

2. This problem has also been actively studied in statistics and machine learning. A partial list includes
Qian and Murphy (2011), Zhao, Zeng, Rush and Kosorok (2012), Swaminathan and Joachims (2015), and
Kallus (2018).
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(1994)’s consist of similar steps. However, the proof of each step is nontrivially different

since the problem of policy choice and that of estimation and inference are not nested by

each other; specifically, the loss function and the action space are different. Recent work on

estimation and inference using Donoho (1994)’s framework includes Armstrong and Kolesár

(2018), Imbens and Wager (2019), Rambachan and Roth (2020), Armstrong and Kolesár

(2021), de Chaisemartin (2021), and Ignatiadis and Wager (2021).

In terms of an application to eligibility cutoff choice, this chapter is also related to the

growing literature on extrapolation away from the cutoff in RD designs, including Rokka-

nen (2015), Angrist and Rokkanen (2015), Dong and Lewbel (2015), Bertanha and Imbens

(2020), Bertanha (2020), Bennett (2020), and Cattaneo, Keele, Titiunik and Vazquez-Bare

(2020). Unlike these papers, I explicitly consider the decision problem of whether or not to

change the cutoff and derive an optimal decision rule. To the best of my knowledge, there

are no existing results for optimal policy decisions based on data generated by an RD model.

1.2 Setup, Optimality Criterion, and Motivating Example

In this section, I set up the policy maker’s problem of deciding between two alternative

policies. This setup allows for the case where the welfare difference between the two policies

is only partially identified. I then introduce the minimax regret criterion to evaluate different

procedures for using data to make decisions. To illustrate my framework and its applicability,

I present the problem of eligibility cutoff choice in an RD setup as an example.

1.2.1 Setup

Data-generating Model. Suppose that the policy maker observes a sample Y =

(Y1, ..., Yn)′ ∈ Rn of the form

Y ∼ N (m(θ),Σ), (1.1)
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where θ is an unknown parameter that lies in a known subset Θ of a vector space V,

m : V→ Rn is a known linear function, and Σ is a known, positive-definite n× n matrix.3

I allow θ to be an infinite-dimensional parameter such as a function.

The linearity ofm is not necessarily restrictive. If we specify θ so that it contains each of

the expected values of Y1, ..., Yn as its element,m is a function that extracts those expected

values from θ, which is linear in θ.

This model allows the expected value of Y to depend on other observed variables such

as covariates and treatment by treating them as fixed and subsuming them into m and Σ.

For example, a regression model with fixed regressors

Yi = f(xi) + ui, ui ∼ N (0, σ2(xi)) independent across i

is a special case where Y = (Y1, ..., Yn)′, θ = f , Θ is a class of functions, m(f) =

(f(x1), ..., f(xn))′, and Σ = diag(σ2(x1), ..., σ2(xn)).

The normality of Y and the assumption of known variance are restrictive, but are often

imposed to deliver finite-sample optimality results for problems of estimation, inference,

and treatment choice. In some cases, it is plausible to assume the normality of Y . For

example, suppose that unit i represents a group of individuals defined by place, time, and

individual characteristics among others and that Y1, ..., Yn are group-level mean outcomes.

If the number of groups is fixed at n, the distribution of Y approaches a normal distribution

as the size of each group grows to infinity by the central limit theorem. The normal model

(1.1) can be viewed as an asymptotic approximation if each group is large enough.4

I assume that the parameter space Θ is convex and centrosymmetric (i.e., θ ∈ Θ implies

−θ ∈ Θ) throughout the chapter. Typical parameter spaces considered in empirical analyses

3. Donoho (1994), Low (1995), and Armstrong and Kolesár (2018) investigate optimal estimation and
inference of a linear functional of θ in a slightly more general version of this model that allows Y to be
infinite dimensional.

4. More generally, suppose that the policy maker observes an n-dimensional vector of statistics of the
original data and that it is an asymptotically normal estimator of its population counterpart. For example,
the mean outcome difference between the treatment and control groups in a randomized experiment is a
statistic that is asymptotically normal for the population mean difference. If we regard the n-dimensional
vector of statistics as Y , the normal model (1.1) can again be viewed as an asymptotic approximation (Stoye,
2012; Tetenov, 2012; Rambachan and Roth, 2020; Andrews, Kitagawa and McCloskey, 2021; Ishihara and
Kitagawa, 2021).
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are convex. For example, in the regression model above, classes of functions with bounded

derivatives (e.g., the class of Lipschitz functions with a known Lipschitz constant) are con-

vex. The centrosymmetry simplifies the analysis, but rules out some shape restrictions. In

the regression model above, Θ fails to be centrosymmetric if we assume the convexity or

concavity of the regression function.5

Policy Choice Problem. Now, suppose that the policy maker is interested in choosing

between two alternative policies, policy 1 and policy 0, to maximize social welfare. The

class of binary policy decisions includes, for example, whether to introduce a program to

a target population and whether to change a policy from the status quo to a new one.

Suppose that the welfare resulting from implementing policy a ∈ {0, 1} under θ is Wa(θ),

whereWa : V→ R is a known function specified by the policy maker. The welfare difference

between policy 1 and policy 0 is given by

L(θ) := W1(θ)−W0(θ).

I assume that L : V → R is a linear function. The optimal policy under θ is policy 1 if

L(θ) > 0, policy 0 if L(θ) < 0, and either of the two if L(θ) = 0.

One example of a welfare criterion is a weighted average of an outcome across individuals.

For example, suppose that a policy could change the outcome of each individual in the

population. Suppose also that we specify θ = (f1(·), f0(·)), where fa(x) represents the

counterfactual mean outcome under policy a across individuals whose observed covariates are

x. The welfare under policy a can be defined, for example, by the population mean outcome

Wa(θ) =
∫
fa(x)dPX , where PX is the probability measure of covariates in the population

and is assumed to be known. In this case, the welfare difference L(θ) =
∫

[f1(x)−f0(x)]dPX

is linear in θ = (f1(·), f0(·)). If we are required to take the policy cost into account, we can

5. On the other hand, in some cases, it is possible to impose the monotonicity of the regression function
by normalizing the sample Y so that the new parameter space is centrosymmetric. Suppose, for example,
that Θ = {f ∈ FLip(C) : f(x) is nondecreasing in x}, where FLip(C) = {f : |f(x) − f(x̃)| ≤ C|x −
x̃| for every x, x̃ ∈ R}. FLip(C) is centrosymmetric while Θ is not. It is easy to show that Θ = {f̃ + f0 : f̃ ∈
FLip(C/2)}, where f0(x) = C

2
x for all x ∈ R. Therefore, the model Y ∼ N (m(f),Σ), f ∈ Θ, is equivalent

to the model Ỹ ∼ N (m(f̃),Σ), f̃ ∈ FLip(C/2), where Ỹ = Y −m(f0) = (Y1− f0(x1), ..., Yn− f0(xn))′; the
set of distributions of Y over f ∈ Θ is identical to the set of distributions of Ỹ +m(f0) over f̃ ∈ FLip(C/2).
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incorporate it into the welfare by redefining the outcome to be the raw outcome minus the

cost. On the other hand, the linearity of L may rule out welfare criteria that depend on the

distribution of the counterfactual outcome.6

Importantly, this framework allows for cases in which L(θ) is not point identified in the

sense that the identified set of L(θ) when m(θ) = µ, namely

{L(θ) : m(θ) = µ, θ ∈ Θ},

is nonsingleton for some or all µ ∈ Rn. This is the set of possible values of L(θ) consistent

with the observed value of Y ∈ Rn when there is no sampling uncertainty. If the identified

set contains both positive and negative values, which policy we should choose is ambiguous

even without sampling uncertainty. Whether L(θ) is point identified or not depends on the

parameter space Θ.

This framework nests some existing setups of treatment choice, such as limit experiments

under parametric models by Hirano and Porter (2009), Gaussian experiments with limited

validity by Stoye (2012), and a setup of policy choice based on multiple studies by Ishihara

and Kitagawa (2021).7 One of the essential departures from these setups is that the pa-

rameter θ can be infinite dimensional, accommodating nonparametric regression models, for

example.8

1.2.2 Optimality Criterion

What is the optimal procedure for using the sample Y to make a policy choice? This

chapter considers the minimax regret criterion as an optimality criterion, following existing

treatment choice studies (e.g., Manski, 2004, 2007; Stoye, 2009, 2012; Kitagawa and Tetenov,

6. One example of such a criterion is
∫ 1

0
w(τ)F−1(τ ; fa)dτ . Here, w(·) is a known weight function, F (·; fa)

is the distribution of the counterfactual outcome under policy a induced by the normal distribution with the
conditional mean function fa, and F−1(τ ; fa) is the τ -th quantile of the distribution.

7. Ishihara and Kitagawa (2021) do not impose convexity of the parameter space to derive their results.
However, the specific examples of the parameter space that they consider satisfy convexity.

8. Hirano and Porter (2009) consider a model with an infinite Gaussian sequence as a limit experiment
under semiparametric models. They do not allow for a partially identified welfare difference—one of the
crucial aspects of this chapter’s setup.
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2018).9

I define a few concepts to introduce the minimax regret criterion. A decision rule is

a measurable function δ : Rn → [0, 1], where δ(y) represents the probability of choosing

policy 1 when the realization of the sample Y is y. The welfare regret loss for policy choice

a ∈ {0, 1} is

l(a, θ) := max
a′∈{0,1}

Wa′(θ)−Wa(θ) =


L(θ) · (1− a) if L(θ) ≥ 0,

−L(θ) · a if L(θ) < 0.

The welfare regret loss l(a, θ) is the difference between the welfare under the optimal policy

and the welfare under policy a under θ. If the policy maker chooses the superior policy,

they do not incur any loss; otherwise, they incur a loss of the absolute value of the welfare

difference L(θ). The risk or regret of decision rule δ under θ is the expected welfare regret

loss

R(δ, θ) :=


L(θ)(1− Eθ[δ(Y )]) if L(θ) ≥ 0,

−L(θ)Eθ[δ(Y )] if L(θ) < 0,

where Eθ denotes the expectation taken with respect to Y under θ.

Given a particular choice of Θ, I evaluate decision rules based on the maximum regret

over Θ, supθ∈ΘR(δ, θ). My goal is to derive a minimax regret decision rule, which achieves

inf
δ

sup
θ∈Θ

R(δ, θ),

where the infimum is taken over the set of all possible decision rules. I do not impose any

restrictions on the class of decision rules.

To sum up, the minimax regret criterion deals with the sampling uncertainty given θ by

taking the expectation of the welfare regret loss with respect to the distribution of Y . It

9. Alternative criteria include the maximin criterion, which solves supδ infθ∈Θ U(δ, θ), where U(δ, θ) =
W1(θ)Eθ[δ(Y )] + W0(θ)(1 − Eθ[δ(Y )]) is the expected welfare under decision rule δ under θ. It has been
pointed out that the maximin criterion is unreasonably pessimistic and can lead to pathological decision
rules (Savage, 1951; Manski, 2004). Another approach is the Bayesian one, which solves supδ

∫
U(δ, θ)dπ(θ),

where π is a prior on the vector space V that θ belongs to. In practice, when it is difficult to make a prior,
the minimax regret criterion is a reasonable choice.
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then deals with the parameter θ by considering the worst-case expected welfare regret loss.

It does not distinguish between the case where the welfare difference L(θ) is point identified

and the case where it is not. Nevertheless, as I show in Section 1.3, the minimax regret rule

behaves differently in each case.

1.2.3 Motivating Example: Eligibility Cutoff Choice in Regression

Discontinuity Designs

In many policy domains, ranging from health to education to social programs, the eligibility

for treatment is determined based on an individual’s observable characteristics. A critical

policy question is whether we should change the eligibility criterion to achieve better welfare

(Dong and Lewbel, 2015).10 My framework can be of use for policy makers interested in

utilizing data to make such decisions.

Consider the following RD setup. For each unit i = 1, .., n, we observe a fixed running

variable xi ∈ R, a binary treatment status di ∈ {0, 1}, and an outcome Yi ∈ R. The eligibility

for treatment is determined based on whether the running variable exceeds a specific cutoff

c0 ∈ R, so that di = 1{xi ≥ c0}. Suppose that the outcome Yi is of the form

Yi = f(xi, di) + ui, ui ∼ N (0, σ2(xi, di)) independent across i, (1.2)

where f : R × {0, 1} → R is an unknown function and the conditional variance σ2(xi, di)

is known for i = 1, ..., n.11 We interpret f(x, d) as the counterfactual mean outcome across

individuals with running variable x if their treatment status is set to d ∈ {0, 1}.12 We can

10. For example, there is a heated debate about whether to extend Medicare eligibility in the United
States (Song, 2020).

11. I make this assumption to deliver finite-sample optimality results. In practice, one replaces the true
conditional variances with their consistent estimators. See Section 1.4.1 for possible estimators.

12. This interpretation is established in a potential outcome model as follows (Armstrong and Kolesár,
2021). Suppose we observe a triple of the outcome, treatment status, and running variable (Yi, Di, Xi).
The observed outcome is Yi = Yi(1)Di + Yi(0)(1−Di), where Yi(1) and Yi(0) are potential outcomes under
treatment and no treatment, respectively. Let f(x, d) = E[Yi(d)|Xi = x], which is equal to E[Yi|Xi =
x,Di = d] if Di is a deterministic function of Xi. We obtain model (1.2) by conditioning on the realized
values {(xi, di)}ni=1 and assuming normal conditional errors.
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write the model in a vector form:

Y ∼ N (m(f),Σ),

where Y = (Y1, ..., Yn)′, m(f) = (f(x1, d1), ..., f(xn, dn))′, and Σ =

diag(σ2(x1, d1), ..., σ2(xn, dn)). Here, f plays the role of the unknown parameter

θ.

Now, suppose that we are interested in changing the eligibility cutoff from c0 to a specific

value c1. For illustration purposes, I assume c1 < c0. Suppose that the welfare under the

cutoff ca, with a ∈ {0, 1}, is an average of the counterfactual mean outcome across different

values of the running variable

Wa(f) =

∫
[f(x, 1)1{x ≥ ca}+ f(x, 0)1{x < ca}]dν(x)

for some known measure ν. One choice of ν is an empirical measure, for which the welfare is

the unweighted sample average: Wa(f) = 1
n

∑n
i=1[f(xi, 1)1{xi ≥ ca}+ f(xi, 0)1{xi < ca}].

The welfare difference between the two cutoffs is

L(f) = W1(f)−W0(f) =

∫
1{c1 ≤ x < c0}[f(x, 1)− f(x, 0)]dν(x),

which is a linear function of f . L(f) is a weighted sum of the conditional average treatment

effect f(x, 1)−f(x, 0) across different values of the running variable between the two cutoffs

c1 and c0.

To conclude the problem’s setup, suppose that f ∈ F , where F is a known set of functions

and plays the role of the parameter space Θ. For an illustration of the results and empirical

application, I focus on the Lipschitz class with a known Lipschitz constant C ≥ 0:

FLip(C) = {f : |f(x, d)− f(x̃, d)| ≤ C|x− x̃| for every x, x̃ ∈ R and d ∈ {0, 1}}.

The Lipschitz constraint bounds the maximum possible change in f(x, d) in response to a

shift in x by one unit. In other words, the absolute value of the derivative of f(x, d) with
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respect to x must be at most C if f is differentiable. The Lipschitz class FLip(C) is both

convex and centrosymmetric.

Imposing f ∈ FLip(C) is not strong enough to uniquely determine L(f) from a given value

of m(f) = (f(x1, d1), ..., f(xn, dn))′. Nevertheless, it produces an informative identified set

of L(f) since it gives finite upper and lower bounds on f(x, d) for every (x, d) ∈ R× {0, 1}

from the knowledge of (f(x1, d1), ..., f(xn, dn)).13

In Section 1.4, I derive a minimax regret rule for this example when the welfare is the

sample average outcome and F = FLip(C).

This example can be easily generalized to a setup where the observed treatment is in-

dependent of counterfactual outcomes conditional on multidimensional covariates (i.e., the

unconfoundedness assumption holds) and there is no or limited overlap in the covariate dis-

tribution between the treatment and control groups. This general setup covers the problem

of whether to change an eligibility criterion based on multiple covariates. Limited overlap

may also occur, for example, if the policy maker wishes to consider whether to introduce

a policy using a composite dataset of treated units from a local randomized experiment

and nonexperimental comparison units from national surveys (LaLonde, 1986; Dehejia and

Wahba, 1999). See Appendix 1.A.1 for details on the general setup.

1.3 Main Result

In this section, I derive a minimax regret rule among all possible decision rules and then

discuss its interpretations and implications. For simplicity, I normalize Σ = σ2In for some

σ > 0, where In is the identity matrix.14

13. Given a value of (f(x1, d1), ..., f(xn, dn)), the upper bound on f(x, d) is mini:di=d(f(xi, d)+C|xi−x|).
The lower bound on f(x, d) is maxi:di=d(f(xi, d)− C|xi − x|).

14. This normalization is without loss of information in the following sense. If Σ is known, observing
Y ∼ N (m(θ),Σ) is equivalent to observing Ỹ ∼ N (m̃(θ), σ2In) for any σ > 0, where Ỹ = σΣ−1/2Y and
m̃(θ) = σΣ−1/2m(θ).

14



1.3.1 Modulus of Continuity

Solving minimax problems over the class of all decision rules is generally a difficult task.

The main tool that I use to solve the minimax regret problem is the modulus of continuity,

defined as

ω(ε;L,m,Θ) := sup{L(θ) : ‖m(θ)‖ ≤ ε, θ ∈ Θ}, ε ≥ 0,

where ‖·‖ is the Euclidean norm. The modulus of continuity and its variants have been used

in constructing minimax optimal estimators and confidence intervals on linear functionals

in Gaussian models (Donoho, 1994; Low, 1995; Cai and Low, 2004; Armstrong and Kolesár,

2018).15 It has not been used in deriving minimax regret rules for the problem of treatment

choice.

By definition, ω(ε;L,m,Θ) is nonnegative and nondecreasing in ε. Furthermore,

ω(ε;L,m,Θ) is concave in ε if Θ is convex.16 I say that θε ∈ Θ attains the mod-

ulus of continuity at ε if L(θε) = ω(ε;L,m,Θ) and ‖m(θε)‖ ≤ ε, namely if θε ∈

arg maxθ∈Θ L(θ) s.t. ‖m(θ)‖ ≤ ε. Below, I suppress the arguments L,m, and Θ if they

are clear from the context.

In the context of this chapter, the modulus of continuity at ε is the largest possible

welfare difference under the constraint that the norm of m(θ), namely the expected value

of Y , is less than or equal to ε. When ε = 0 and hence the expected value of Y must be a

vector of zeros, the sample Y is uninformative. When the norm constraint ‖m(θ)‖ ≤ ε is

relaxed, the strength of Y as a signal for L(θ) may increase, which makes it easier for the

policy maker to detect the optimal policy. At the same time, the largest potential welfare

loss when choosing the inferior policy may increase since the flexibility of θ increases because

of the weaker norm constraint. The modulus of continuity is used to trade off these two

criteria and find parameter values that are least favorable for the policy maker.

Here, I briefly formalize the above argument, deferring the statement of the necessary

assumptions and the complete proof and discussion to Section 1.3.2 and Section 1.6, respec-

15. Donoho (1994) defines the modulus of continuity as ω̃(ε) = sup{|L(θ)−L(θ̃)| : ‖m(θ−θ̃)‖ ≤ ε, θ, θ̃ ∈ Θ}.
If Θ is convex and centrosymmetric, the relationship ω̃(ε) = 2ω(ε/2) holds.

16. See, for example, Donoho (1994, Lemma 3) and Armstrong and Kolesár (2018, Appendix A).

15



tively.

I introduce some notation. I use R(σ; Θ) to denote the minimax risk infδ supθ∈ΘR(δ, θ),

which may depend on the standard deviation σ and on the choice of the parameter space Θ

among others. Given any two parameter values θ̃, θ̄ ∈ V, where V is the vector space that the

parameter θ belongs to, I define a one-dimensional subproblem as the set of all convex com-

binations of θ̃ and θ̄, denoted by [θ̃, θ̄] = {(1− λ)θ̃ + λθ̄ : λ ∈ [0, 1]}. Let R(σ; [θ̃, θ̄]) denote

the minimax risk infδ supθ∈[θ̃,θ̄]R(δ, θ) for the one-dimensional subproblem [θ̃, θ̄]. Addition-

ally, let Φ and φ denote the cumulative distribution function and the probability density

function, respectively, of a standard normal variable. Lastly, let a∗ ∈ arg maxa≥0 aΦ(−a),

which is shown to be unique by Lemma 1.B.1 in Appendix 1.B.1.

Below, I first use the modulus of continuity to characterize the hardest one-dimensional

subproblem of the form [−θ̄, θ̄] with θ̄ ∈ Θ, namely the one that has the largest minimax

risk R(σ; [−θ̄, θ̄]) among all one-dimensional subproblems of this form. I then explain that

the hardest one-dimensional subproblem is as hard as the original problem with the whole

parameter space Θ, suggesting that the hardest one-dimensional subproblem consists of the

least favorable parameter values in the original problem.

As shown in Lemmas 1.3 and 1.6 in Section 1.6, the minimax risk for the one-dimensional

subproblem [−θ̄, θ̄] with L(θ̄) ≥ 0 is given by

R(σ; [−θ̄, θ̄]) =


L(θ̄)Φ

(
−‖m(θ̄)‖

σ

)
if ‖m(θ̄)‖ ≤ a∗σ,

a∗σ L(θ̄)

‖m(θ̄)‖Φ (−a∗) if ‖m(θ̄)‖ > a∗σ.

For example, if L(θ̄) ≥ 0 and ‖m(θ̄)‖ > 0, the decision rule δ̄(Y ) = 1{m(θ̄)′Y ≥ 0} is

shown to be minimax regret for the subproblem [−θ̄, θ̄]. Computing the maximum regret

supθ∈[−θ̄,θ̄]R(δ̄, θ) yields the above display.

For simplicity, I assume only here that for each ε ≥ 0, there exists a value of θ that

attains the modulus of continuity at ε with ‖m(θ)‖ = ε. The minimax risk for the hardest
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one-dimensional subproblem can then be expressed in terms of the modulus of continuity:

sup
θ̄∈Θ

R(σ; [−θ̄, θ̄]) = sup
ε≥0

sup
θ̄∈Θ:‖m(θ̄)‖=ε,L(θ̄)≥0

R(σ; [−θ̄, θ̄])

= sup

{
sup

ε∈[0,a∗σ]
sup

θ̄∈Θ:‖m(θ̄)‖=ε
L(θ̄)Φ

(
−‖m(θ̄)‖

σ

)
, sup
ε>a∗σ

sup
θ̄∈Θ:‖m(θ̄)‖=ε

a∗σ
L(θ̄)

‖m(θ̄)‖
Φ (−a∗)

}

= sup

{
sup

ε∈[0,a∗σ]
ω(ε)Φ(−ε/σ), sup

ε>a∗σ
a∗σ

ω(ε)

ε
Φ(−a∗)

}
,

where the first equality holds since restricting attention to θ̄ with L(θ̄) ≥ 0 does not change

the supremum by the centrosymmetry of Θ and the last equality follows from the defini-

tion of the modulus of continuity. Furthermore, since ω(ε)
ε is shown to be nonincreasing,

supε>a∗σ a
∗σ ω(ε)

ε Φ(−a∗) = ω(a∗σ)Φ(−a∗). The above expression can then be simplified

into:

sup
θ̄∈Θ

R(σ; [−θ̄, θ̄]) = sup
ε∈[0,a∗σ]

ω(ε)Φ(−ε/σ).

Now, let ε∗ solve the maximization problem on the right-hand side. ε∗ balances the

potential welfare loss (ω(ε)) and the probability of incurring loss (Φ (−ε/σ)). The corre-

sponding subproblem [−θε∗ , θε∗ ] has the largest minimax risk among all one-dimensional

subproblems, where θε∗ attains the modulus of continuity at ε∗.

It turns out that the subproblem [−θε∗ , θε∗ ] is as hard as the original problem with the

whole parameter space Θ. That is, the two problems have the same minimax risk:

R(σ; [−θε∗ , θε∗ ]) = R(σ; Θ),

as shown in Section 1.6. Thus, θε∗ and −θε∗ are the least favorable parameter values for the

policy maker.

In the next section, I derive a minimax regret rule. The rule protects against the worst

case, as I discuss in Sections 1.3.3 and 1.3.4.
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1.3.2 Minimax Regret Rules

I now present a minimax regret rule. To derive the result, I impose the following restrictions

on L, m, and Θ. For expositional purposes, I assume that a∗σ < supθ∈Θ ‖m(θ)‖.17

Assumption 1.1 (Regularity). The following holds for some ε̄ > 0.

(a) For all ε ∈ [0, ε̄], there exists θε ∈ Θ that attains the modulus of continuity at ε.

(b) There exists w∗ ∈ Rn such that limε→0 ε
−1
(
w∗ − m(θε)

‖m(θε)‖

)
= 0.

(c) For all ε ∈ [0, ε̄], there exists ι ∈ Θ such that L(ι) 6= 0 and θε + cι ∈ Θ for all c in a

neighborhood of zero.

(d) ω(·) is differentiable at any ε ∈ (0, a∗σ]. Furthermore, ρ(·) is differentiable at

any ε ∈ (ε1, ε2), where ρ(ε) = sup{L(θ) : (w∗)′m(θ) = ε, θ ∈ Θ} for ε ∈ R,

ε1 = inf{(w∗)′m(θ) : θ ∈ Θ}, and ε2 = sup{(w∗)′m(θ) : θ ∈ Θ}.

Assumption 1.1(a) says that the modulus of continuity is attained for all sufficiently

small ε ≥ 0, which typically holds if Θ is closed.18 Assumption 1.1(b) requires that the unit

vector m(θε)
‖m(θε)‖ ∈ Rn converge to some constant w∗ faster than ε as ε→ 0. The limit w∗ can

be viewed as the direction at which the welfare difference L(θ) increases the most when we

move m(θ) from 0. In Section 1.4, I show that Assumption 1.1(b) holds for the example

in Section 1.2.3 by calculating a closed-form expression for m(θε)
‖m(θε)‖ for any sufficiently small

ε > 0. In principle, it is possible to verify whether Assumption 1.1(b) holds or not by

numerically computing the limit of m(θε)
‖m(θε)‖ as ε→ 0 and its convergence rate.

Assumption 1.1(c) and (d) are mild regularity conditions. Assumption 1.1(c) says that

θε lies in Θ even after receiving a small perturbation in the direction of some ι such that

L(ι) 6= 0. Assumption 1.1(d) assumes the differentiability of ω(ε) and ρ(ε) = sup{L(θ) :

(w∗)′m(θ) = ε, θ ∈ Θ}. I provide sufficient conditions for the differentiability in Appendix

1.A.3. I make Assumption 1.1(c) and (d) to simplify the characterization of a minimax

regret decision rule. In Section 1.6, I present the results under relaxed conditions.

17. When a∗σ ≥ supθ∈Θ ‖m(θ)‖, Theorem 1.1 holds with a∗σ replaced with supθ∈Θ ‖m(θ)‖.

18. See Donoho (1994, Lemma 2) for sufficient conditions.
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The following theorem derives a minimax regret rule.

Theorem 1.1 (Minimax Regret Rule). Let Θ be convex and centrosymmetric, and suppose

that Assumption 1.1 holds. Let

ε∗ ∈ arg max
ε∈[0,a∗σ]

ω(ε)Φ(−ε/σ),

and suppose that there exists θε∗ ∈ Θ that attains the modulus of continuity at ε∗. Then, the

following decision rule is minimax regret:

δ∗(Y ) =



1 {m(θε∗)
′Y ≥ 0} if σ > 2φ(0) ω(0)

ω′(0) ,

1 {(w∗)′Y ≥ 0} if σ = 2φ(0) ω(0)
ω′(0) ,

Φ

(
(w∗)′Y

((2φ(0)ω(0)/ω′(0))2 − σ2)1/2

)
if σ < 2φ(0) ω(0)

ω′(0) ,

where ω′(0) is the right derivative of ω(·) at ε = 0.19 Here, m(θε∗) does not depend on the

choice of θε∗ among those that attain the modulus of continuity at ε∗. The minimax risk is

given by

R(σ; Θ) = ω(ε∗)Φ(−ε∗/σ).

Proof. See Section 1.6.

The minimax regret rule takes different forms for the case where σ ≥ 2φ(0) ω(0)
ω′(0) and for

the case where σ < 2φ(0) ω(0)
ω′(0) . If σ ≥ 2φ(0) ω(0)

ω′(0) , the minimax regret rule is nonrandomized,

making a choice according to the sign of a weighted sum of the sample Y . If σ < 2φ(0) ω(0)
ω′(0) ,

the minimax regret rule is randomized, assigning a positive probability both to policies 1

and 0.

Below, I discuss the interpretations and implications of Theorem 1.1, starting from the

condition σ ≥ 2φ(0) ω(0)
ω′(0) .

19. The right derivative exists since ω(·) is concave. Under Assumption 1.1, it is shown that ω′(0) > 0.
See Lemma 1.5 in Section 1.6.2 and its proof for the details.
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1.3.3 When and Why Randomize?

The condition σ ≥ 2φ(0) ω(0)
ω′(0) determines whether the minimax regret rule is randomized or

not. This condition is related to the strength of the restrictions imposed on the parameter

space Θ. To see this, note first that ω(0) = sup{L(θ) : m(θ) = 0, θ ∈ Θ} by definition.

Since L andm are linear and Θ is convex and centrosymmetric, it is shown that the closure

of the identified set of L(θ) when m(θ) = 0 is given by20

cl({L(θ) : m(θ) = 0, θ ∈ Θ}) = [−ω(0), ω(0)].

We can thus interpret ω(0) as half of the length of the identified set of L(θ) whenm(θ) = 0.

If L(θ) is identified, the length of the identified set is zero, which means that ω(0) = 0.

Since σ ≥ 2φ(0) ω(0)
ω′(0) , the minimax regret rule is always nonrandomized for cases where L(θ)

is identified. In the example of Section 1.2.3, L(θ) is identified if, for example, we specify a

polynomial model for f (see Section 1.5.2.1 for details).

On the other hand, if L(θ) is not identified, the length of the identified set is nonzero,

which means that ω(0) > 0. If the identified set is small relative to σ (holding ω′(0) fixed),

the condition σ ≥ 2φ(0) ω(0)
ω′(0) holds, and the minimax regret rule is nonrandomized. If the

identified set is large relative to σ, the minimax regret rule is randomized. In Section 1.4,

I show how this condition translates into one regarding the Lipschitz constant C in the

example of Section 1.2.3.

For understanding why the policy maker should randomize their decisions when ω(0) is

large relative to σ, it is useful to consider the problem of finding worst-case parameter values

for a generic decision rule δ. The worst-case regret is attained at the parameter values that

optimally trade off the potential welfare loss and the probability of incurring loss (i.e., L(θ)

and 1 − Eθ[δ(Y )] when L(θ) ≥ 0). Suppose that ω(0) is large relative to σ and that the

policy maker uses a nonrandomized rule. Since σ is small, Y does not vary much across

repeated samples, which makes the policy maker’s choice based on the nonrandomized rule

20. Since L and m are linear and Θ is centrosymmetric, −ω(0) = inf{L(θ) : m(θ) = 0, θ ∈ Θ}. Moreover,
for any α ∈ (−ω(0), ω(0)), we can find θ ∈ Θ such that L(θ) = α and m(θ) = 0 by the linearity of L and m
and the convexity of Θ.
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too predictable. By exploiting it, it is easy to find a value of θ under which the policy maker

chooses the inferior policy with a high probability. If ω(0) is large enough, such choice

of θ is not likely associated with a small welfare loss, leading to a large expected welfare

loss of the decision rule. The policy maker can avoid this by randomizing their decisions;

randomization makes their choice less predictable and protects against the exploitation of

predictable choices.21

1.3.4 Intuition for Minimax Regret Rule

I now provide intuition for and interpretations of the minimax regret rule separately for the

case where the rule is nonrandomized and for the one where the rule is randomized.

Nonrandomized Rule. If σ > 2φ(0) ω(0)
ω′(0) , we first compute ε∗ ∈

arg maxε∈[0,a∗σ] ω(ε)Φ(−ε/σ) to construct the minimax regret rule. This maximiza-

tion problem corresponds to that of finding the hardest one-dimensional subproblem, as

discussed in Section 1.3.1. The corresponding parameter values θε∗ and −θε∗ are the least

favorable for the policy maker, where θε∗ attains the modulus of continuity at ε∗.

The minimax regret rule δ∗ protects against the worst case. To see this, note that the

optimal policy is policy 1 under θε∗ and policy 0 under −θε∗ . The decision rule δ∗ chooses

policy 1 if the signal Y agrees more with θε∗ (i.e., m(θε∗)
′Y > 0) and chooses policy 0 if

the signal Y agrees more with −θε∗ (i.e., m(θε∗)
′Y < 0). More specifically, m(θε∗)

′Y is

shown to be a sufficient statistic of the sample Y for the parameter θ in the one-dimensional

subproblem [−θε∗ , θε∗ ]. The sign of m(θε∗)
′Y provides information about whether the true

θ is closer to θε∗ or to −θε∗ .

Randomized Rule. If σ ≤ 2φ(0) ω(0)
ω′(0) , ε

∗ = 0 as shown in Lemma 1.1, where ε∗ ∈

arg maxε∈[0,a∗σ] ω(ε)Φ(−ε/σ). As a result, θ0 and −θ0 are the least favorable parameter

values for the policy maker, where θ0 attains the modulus of continuity at ε = 0. Unlike

in the case where ε∗ > 0, the minimax regret rule does not base decisions on a weighted

21. The fact that the minimax regret criterion may lead to a randomized rule under partial identification
has been documented in the literature on treatment choice. See, for example, Manski (2007, 2009, 2011a,b)
and Stoye (2012).
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summ(θ0)′Y , which is always zero sincem(θ0) = 0 by definition. The minimax regret rule

instead uses (w∗)′Y , where w∗ = limε→0
m(θε)
‖m(θε)‖ .

Simple calculations show that the randomized minimax regret rule is equivalent to

δ∗(Y ) = Prξ∼N (0,(2φ(0)ω(0)/ω′(0))2−σ2)

(
(w∗)′Y + ξ ≥ 0

)
.

This rule is obtained through the following two-step procedure. We first add a noise ξ ∼

N (0, (2φ(0)ω(0)/ω′(0))2 − σ2) to (w∗)′Y . This addition artificially increases the standard

deviation of (w∗)′Y from σ to 2φ(0) ω(0)
ω′(0) , which is the threshold at which we switch from a

nonrandomized rule to a randomized rule. We then make a decision according to the sign

of (w∗)′Y + ξ.

The larger ω(0) is, the larger the variance of ξ is and the more dependent the choice is

on the noise. As a result, given any realization of Y , the probabilities of choosing policy 1

and policy 0 approach 1/2 as ω(0) increases, which suggests that the decisions become more

mixed if we impose weaker restrictions on Θ.

1.3.5 Relation to Existing Results

Theorem 1.1 contains Proposition 7(iii) of Stoye (2012) as a special case. He considers a

simple setup with a specific form of partial identification. In the notation of this chapter, we

observe a scalar sample Y ∼ N (m(θ), σ2), θ = (θ1, θ2)′ ∈ R2, m(θ) = θ1, Θ = {(θ1, θ2)′ ∈

[−1, 1]2 : θ2 ∈ [aθ1 − b, aθ1 + b]} for some known constants a ∈ (0, 1] and b ∈ (0, 1), and

L(θ) = θ2.22 Stoye (2012) shows that the following rule is minimax regret:

δ∗(Y ) =


1{Y ≥ 0} if σ ≥ 2φ(0) ba ,

Φ

(
Y

((2φ(0)b/a)2 − σ2)1/2

)
if σ < 2φ(0) ba .

22. Strictly speaking, Stoye (2012) also covers the case where b ≥ 1. This case is not covered by Theorem
1.1 since Assumption 1.1(c) does not hold; θ∗ = (0, 1)′ attains the modulus of continuity at ε = 0, but there
exists no θ ∈ Θ such that L(θ) = θ2 6= 0 and θ∗ + cθ ∈ Θ for any small c > 0. Theorem 1.3 in Section 1.6.2
covers this case.
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The condition σ ≥ 2φ(0) ba is equivalent to σ ≥ 2φ(0) ω(0)
ω′(0) since ω(ε) = sup{θ2 : θ1 ∈

[−ε, ε], (θ1, θ2)′ ∈ Θ} = min{aε+ b, 1} in this setup. Note that the nonrandomized minimax

regret rule δ∗(Y ) = 1{Y ≥ 0} is insensitive to any of σ, a, and b as long as σ ≥ 2φ(0) ba .

Theorem 1.1 confirms that both nonrandomized and randomized rules can be minimax

regret even in much more general setups than the above. At the same time, Theorem 1.1

suggests that the nonrandomized minimax regret rule 1 {m(θε∗)
′Y ≥ 0} may be sensitive to

σ and Θ, since ε∗ and θε∗ depend on them. Therefore, the robustness of the nonrandomized

minimax regret rule to the error variance and to the parameter space is not a general

property.23

In a special case of this chapter’s setup, Ishihara and Kitagawa (2021) characterize the

decision rule that minimizes the maximum regret within the class of decision rules of the

form δ(Y ) = 1{w′Y ≥ 0}, where w ∈ Rn. Theorem 1.1 shows that this restricted class

contains the minimax regret rule when σ ≥ 2φ(0) ω(0)
ω′(0) and does not when σ < 2φ(0) ω(0)

ω′(0) .

1.4 Application to Eligibility Cutoff Choice

Theorem 1.1 provides a procedure to compute a minimax regret rule for the example in

Section 1.2.3. In this section, I provide the formula for the minimax regret rule and discuss

how the rule depends on the specification of the Lipschitz constant C and the new cutoff c1.

I first normalize Y and m(·) by left multiplying them by Σ−1/2 so that the variance-

covariance matrix of the sample is a diagonal matrix:

Ỹ ∼ N (m̃(f), In),

where Ỹ = Σ−1/2Y = (Y1/σ(x1, d1), ..., Yn/σ(xn, dn))′, and m̃(f) = Σ−1/2m(f) =

(f(x1, d1)/σ(x1, d1), ..., f(xn, dn)/σ(xn, dn))′. For illustration, I focus on the Lipschitz class

F = FLip(C) and suppose that the welfare is the sample average of the expected outcome.

23. It is possible to come up with an example where the nonrandomized rule depends on σ and Θ if Y
is two or higher dimensional. This suggests that the robustness property is specific to the problem with a
scalar sample, where a reasonable nonrandomized decision rule is only either 1{Y ≥ 0} or 1{Y < 0}.
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The welfare difference is given by

L(f) =
1

n

n∑
i=1

1{c1 ≤ xi < c0}[f(xi, 1)− f(xi, 0)].

Below, I first verify that Assumption 1.1 holds and then apply Theorem 1.1 to derive

the minimax regret rule. Assumption 1.1(c) straightforwardly holds with ι(x, d) = d for

all x ∈ R, provided that Assumption 1.1(a) holds. Assumption 1.1(d) is shown to hold in

Appendix 1.A.4.

I verify Assumption 1.1(a) and (b) by deriving a closed-form expression for a value of

f that attains the modulus of continuity at ε when ε is sufficiently small. The modulus of

continuity ω(ε;L, m̃,FLip(C)) is computed by solving

sup
f∈FLip(C)

1

n

n∑
i=1

1{c1 ≤ x < c0}[f(xi, 1)− f(xi, 0)] s.t.
n∑
i=1

f(xi, di)
2

σ2(xi, di)
≤ ε2. (1.3)

The unknown parameter f is infinite dimensional, but the objective and the

norm constraint
∑n

i=1
f(xi,di)

2

σ2(xi,di)
≤ ε2 depend on f only through its values at

(x1, 0), ..., (xn, 0), (x1, 1), ..., (xn, 1). This optimization problem can be reduced to the follow-

ing convex optimization problem with 2n unknowns and 1 + n(n− 1) inequality constraints

by a slight modification of Theorem 2.2 in Armstrong and Kolesár (2021):

max
(f(xi,0),f(xi,1))i=1,...,n∈R2n

1

n

n∑
i=1

1{c1 ≤ xi < c0}[f(xi, 1)− f(xi, 0)] (1.4)

s.t.
n∑
i=1

f(xi, di)
2

σ2(xi, di)
≤ ε2, f(xi, d)− f(xj , d) ≤ C|xi − xj |, d ∈ {0, 1}, i, j ∈ {1, ..., n}.

Once we find a solution (f(xi, 0), f(xi, 1))i=1,...,n to (1.4), we can always find a function

f ∈ FLip(C) that interpolates the points (xi, f(xi, 0)), (xi, f(xi, 1)), i = 1, ..., n (Beliakov,

2006, Theorem 4), which is a solution to the original problem (1.3).

Now, I show that the problem (1.4) has a closed-form solution for any sufficiently small

ε ≥ 0. The derivation utilizes the specific treatment assignment rule in the RD, namely

di = 1{xi ≥ c0}. Let ñ =
∑n

i=1 1{c1 ≤ xi < c0} denote the number of units whose

treatment status would be changed if the cutoff were changed. Additionally, let x+,min =
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min{xi : xi ≥ c0} be the value of x of the treated unit closest to the original cutoff c0, and

let σ2
+,min = σ2(x+,min, 1). To simplify the exposition, I assume that xi 6= xj for any i 6= j,

i, j = 1, ..., n, in what follows.24

Proposition 1.1 (Solution to Modulus Problem for Cutoff Choice). Suppose that di =

1{xi ≥ c0} for all i = 1, ..., n and that xi 6= xj for any i 6= j, i, j = 1, ..., n. Then, there

exists ε̄ > 0 such that for any ε ∈ [0, ε̄], one solution to (1.4) is given by

fε(xi, 0) =


0 if xi < c1 or xi ≥ c0,

−σ
2(xi, 0)ε

σ̄
if c1 ≤ xi < c0,

fε(xi, 1) =


0 if xi > x+,min,

C(x+,min − xi) +
ñσ2

+,minε

σ̄
if xi ≤ x+,min,

and the modulus of continuity is given by

ω(ε;L, m̃,FLip(C)) = C
1

n

n∑
i=1

1{c1 ≤ xi < c0}[x+,min − xi] +
σ̄ε

n
,

where σ̄ = (ñ2σ2
+,min +

∑
i:c1≤xi<c0 σ

2(xi, 0))1/2.

Proof. See Appendix 1.B.2.

A brief explanation of this result is as follows. Since di = 1{xi ≥ c0}, the norm constraint

of (1.4) does not depend on f(xi, 1) for i with xi < c0. The upper bound on f(xi, 1) for

such unit i is C(x+,min − xi) + f(x+,min, 1) under the Lipschitz constraint; (xi, f(xi, 1)) lies

on the straight line with slope −C that goes through (x+,min, f(x+,min, 1)). Given a value of

f(x+,min, 1), the objective of (1.4) then becomes C 1
n

∑
i:c1≤xi<c0 [x+,min−xi]+ ñ

nf(x+,min, 1)−
1
n

∑
i:c1≤xi<c0 f(xi, 0), which is a constant plus a weighted sum of f(x+,min, 1) and f(xi, 0)

for i with c1 ≤ xi < c0. By maximizing this under the norm constraint, we obtain the

display of fε in Proposition 1.1, which turns out to satisfy the Lipschitz constraint for any

sufficiently small ε.

24. It is possible to obtain a closed-form solution without this assumption at the cost of making the
presentation more complex.
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Assumption 1.1(a) immediately follows from Proposition 1.1. Moreover, for any ε ∈ [0, ε̄],
m̃(fε)
‖m̃(fε)‖ = m̃(fε)

ε is constant and equal to w∗ = (w∗1, ..., w
∗
n)′, where

w∗i =


0 if xi < c1 or xi > x+,min,

−σ(xi, 0)

σ̄
if c1 ≤ xi < c0,

ñσ+,min

σ̄
if xi = x+,min.

(1.5)

Therefore, Assumption 1.1(b) holds.

Now, I apply Theorem 1.1 to derive the minimax regret rule. By Proposition 1.1, we

obtain closed-form expressions for ω(0;L, m̃,FLip(C)) and ω′(0;L, m̃,FLip(C)):

ω(0;L, m̃,FLip(C)) =
C

n

n∑
i=1

1{c1 ≤ xi < c0}[x+,min − xi], ω′(0;L, m̃,FLip(C)) =
σ̄

n
.

Let

σ∗ := 2φ(0)
ω(0;L, m̃,FLip(C))

ω′(0;L, m̃,FLip(C))
= 2φ(0)C

n∑
i=1

1{c1 ≤ xi < c0}[x+,min − xi]/σ̄. (1.6)

Recall that Ỹ = Σ−1/2Y = (Y1/σ(x1, d1), ..., Yn/σ(xn, dn))′, m̃(f) = Σ−1/2m(f) =

(f(x1, d1)/σ(x1, d1), ..., f(xn, dn)/σ(xn, dn))′, and the variance of Ỹ is In. Let ε∗ ∈

arg maxε∈[0,a∗] ω(ε;L, m̃,FLip(C))Φ(−ε) and (fε∗(xi, 0), fε∗(xi, 1))i=1,...,n solve the problem

(1.4) for ε = ε∗. By Theorem 1.1, the following rule is minimax regret:

δ∗(Y ) =



1
{∑n

i=1 fε∗(xi, di)Yi/σ
2(xi, di) ≥ 0

}
if 1 > σ∗,

1 {
∑n

i=1w
∗
i Yi/σ(xi, di) ≥ 0} if 1 = σ∗,

Φ

(∑n
i=1w

∗
i Yi/σ(xi, di)

((σ∗)2 − 1)1/2

)
if 1 < σ∗.

(1.7)

The minimax regret rule makes a decision based on a weighted sum of Y1, ..., Yn.

To understand how the rule differs across different values of the Lipschitz constant C,

suppose first that the magnitude of C is moderate so that σ∗ is marginally smaller than 1.

In this case, ε∗ tends to be sufficiently small, which implies that fε∗ (xi,di)/σ(xi,di)
ε∗ = w∗i by
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Proposition 1.1. The minimax regret rule is given by

δ∗(Y ) = 1

{
n∑
i=1

fε∗(xi, di)Yi/σ
2(xi, di) ≥ 0

}

= 1

{
n∑
i=1

w∗i Yi/σ(xi, di) ≥ 0

}
= 1

Y+,min −
1

ñ

∑
i:c1≤xi<c0

Yi ≥ 0

 ,

where Y+,min = Yi for i with xi = x+,min. Y+,min− 1
ñ

∑
i:c1≤xi<c0 Yi is the difference between

the outcome of the treated unit closest to the status quo cutoff c0 and the mean outcome

across the untreated units between the two cutoffs c0 and c1. This difference can be inter-

preted as an estimator of the effect of the cutoff change. The outcomes of the other units are

not used to construct the estimator. The minimax regret rule makes a decision according

to its sign.

On the other hand, if the Lipschitz constant C is small enough so that σ∗ is substantially

smaller than 1, nonzero weights may be assigned to some of the other units, that is, fε∗(xi, di)

may be nonzero for some of the units with xi < c1 or xi > x+,min. If the Lipschitz constant

C is large enough so that σ∗ > 1, the minimax regret rule is a randomized rule based on

Y+,min − 1
ñ

∑
i:c1≤xi<c0 Yi.

Whether the minimax regret rule is randomized or not depends not only on the Lipschitz

constant C but also on the cutoffs c0 and c1 and σ̄ = (ñ2σ2
+,min +

∑
i:c1≤xi<c0 σ

2(xi, 0))1/2.

To investigate their relationships, suppose that σ2(xi, di) = σ2 for all i for some σ2 > 0 for

simplicity. In this situation, σ̄ = (ñ2 + ñ)1/2σ, and

σ∗ =
2φ(0)C 1

ñ

∑n
i=1 1{c1 ≤ xi < c0}[x+,min − xi]

(1 + 1/ñ)1/2 σ
.

σ∗ is nonincreasing in c1 since 1
ñ

∑n
i=1 1{c1 ≤ xi < c0}[x+,min − xi] and ñ are nonincreasing

in c1.25 Furthermore, σ∗ is decreasing in σ. Therefore, the minimax regret rule is nonran-

domized when c1 is large (i.e., when the cutoff change c0 − c1 is small) or σ is large. The

minimax regret rule is randomized otherwise.

25. Whether σ∗ is increasing in c0 or not depends on the empirical distribution of xi.
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1.4.1 Practical Implementation

Here, I summarize the procedure for computing the minimax regret rule and discuss practical

issues. Given the conditional variances σ2(xi, di), i = 1, ..., n and the Lipschitz constant C,

the minimax regret rule is computed as follows.

1. Compute σ∗ using the closed-form expression (1.6).

2. If 1 > σ∗, find ε∗ ∈ arg maxε∈[0,a∗] ω(ε)Φ(−ε) and compute fε∗ that attains the modulus

of continuity at ε∗. For each ε ≥ 0, ω(ε) is computed by solving the convex optimization

problem (1.4).26 An efficient method for computing ε∗ is provided in Appendix 1.A.6.

3. If 1 ≤ σ∗, compute w∗ using the closed-form expression (1.5).

4. Construct the decision rule according to (1.7).

In practice, the conditional variance σ2(xi, di) is unknown. I suggest using a consistent

estimator in place of the true σ2(xi, di). The conditional variance can be estimated, for

example, by applying a local linear regression to the squared residuals (Fan and Yao, 1998)

or by the nearest-neighbor variance estimator (Abadie and Imbens, 2006). In the case where

unit i represents a group of individuals and where Yi is the sample mean outcome within

group i, it is natural to use the conventional standard error of the sample mean as σ(xi, di).

Implementation of the minimax regret rule requires choosing the Lipschitz constant C.

In principle, it is not possible to choose the Lipschitz constant C that applies to both sides

of the cutoff c0 in a data-driven way since we only observe outcomes either under treatment

or under no treatment on each side. It is, however, possible to estimate a lower bound on

C by using the following observation: if f ∈ FLip(C) is differentiable, a lower bound on C

is given by max
{

maxx̃≥c0

∣∣∣∂f(x̃,1)
∂x

∣∣∣ ,maxx̃<c0

∣∣∣∂f(x̃,0)
∂x

∣∣∣} since
∣∣∣∂f(x̃,d)

∂x

∣∣∣ ≤ C for all x̃ and d.

To estimate a lower bound, we could estimate the derivatives ∂f(x̃,1)
∂x for x̃ ≥ c0 and ∂f(x̃,0)

∂x

for x̃ < c0 by a local polynomial regression and then take the maximum of their absolute

26. In the empirical application in Section 1.7, I solve the convex optimization problem using CVXPY, a
Python-embedded modeling language for convex optimization problems (Diamond and Boyd, 2016; Agrawal,
Verschueren, Diamond and Boyd, 2018).
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values over a plausible, relevant interval.27 In practice, I recommend considering a range

of plausible choices of C, including the estimated lower bound, to conduct a sensitivity

analysis. I implement this approach for my empirical application in Section 1.7.

1.5 Additional Implications of the Main Result

In this section, I present two implications of Theorem 1.1. First, I discuss the difference

between the minimax regret rule and a plug-in decision rule based on a linear minimax mean

squared error (MSE) estimator. Second, I investigate the properties of the minimax regret

rule when the welfare difference is point identified.

1.5.1 Comparison with a Plug-in Rule Based on a Linear Minimax Mean

Squared Error Estimator

When σ > 2φ(0) ω(0)
ω′(0) , the minimax regret rule is a nonrandomized rule that makes a choice

according to the sign of a weighted sum of Y . In this section, I compare the nonrandomized

minimax regret rule with a plug-in rule based on a linear minimax MSE estimator.28

To define the alternative rule, let L̂MSE(Y ) = w′MSEY be a linear minimax MSE esti-

mator, where

wMSE ∈ arg min
w∈Rn

sup
θ∈Θ

Eθ[(w′Y − L(θ))2].

L̂MSE(Y ) is an estimator of L(θ) that has the smallest worst-case MSE within the class of

linear estimators. I define the plug-in MSE rule as δMSE(Y ) = 1{L̂MSE(Y ) ≥ 0}, which

makes a choice according to the sign of the linear minimax MSE estimator of L(θ).

Donoho (1994) characterizes L̂MSE(Y ) using the modulus of continuity. For a simple

statement of Donoho (1994)’s result, suppose that ω(·) is differentiable and that Θ is convex

27. Simply taking the maximum of the estimated derivatives could raise a concern of upward bias. One
could use the method for intersection bounds developed by Chernozhukov, Lee and Rosen (2013) to address
it.

28. In Appendix 1.A.2, I also compare the minimax regret rule with a hypothesis testing rule that chooses
policy 1 if a hypothesis that supports policy 0 is rejected.
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and centrosymmetric. Let εMSE > 0 solve

ε2

ε2 + σ2
=
ω′(ε)ε

ω(ε)
.

The linear minimax MSE estimator is then given by L̂MSE(Y ) = ω′(εMSE)
εMSE

m(θεMSE)′Y , where

θεMSE attains the modulus of continuity at εMSE with ‖m(θεMSE)‖ = εMSE. The plug-in MSE

rule is δMSE(Y ) = 1{m(θεMSE)′Y ≥ 0}.

Recall that the minimax regret rule is δ∗(Y ) = 1{m(θε∗)
′Y ≥ 0} if σ > 2φ(0) ω(0)

ω′(0) ,

where ε∗ solves maxε∈[0,a∗σ] ω(ε)Φ(−ε/σ).

Proposition 1.2 (Comparison with Plug-in MSE Rule). Suppose that ω(·) is differentiable,

and let εMSE solve ε2

ε2+σ2 = ω′(ε)ε
ω(ε) and ε∗ solve maxε∈[0,a∗σ] ω(ε)Φ(−ε/σ). Then, ε∗ < εMSE.

Proof. See Appendix 1.B.3.

I provide an implication of Proposition 1.2 through the following result from Donoho

(1994) and Low (1995): the optimal bias-variance frontier in the estimation of L(θ) can be

traced out by a class of linear estimators {L̂ε(Y )}ε>0 of the form L̂ε(Y ) = ω′(ε)
ε m(θε)

′Y .

Here, θε attains the modulus of continuity at ε with ‖m(θε)‖ = ε. Specifically, for each ε > 0,

L̂ε(Y ) minimizes the maximum bias among all linear estimators with variance bounded by

Var(L̂ε(Y )) = (σω′(ε))2:

ω′(ε)

ε
m(θε) ∈ arg min

w∈Rn
BiasΘ(w′Y ) s.t. Var(w′Y ) ≤ (σω′(ε))2,

where BiasΘ(w′Y ) = supθ∈Θ Eθ[w′Y − L(θ)] is the maximum bias of w′Y over Θ. As

ε increases, the maximum bias BiasΘ(L̂ε(Y )) increases and the variance Var(L̂ε(Y )) =

(σω′(ε))2 decreases. εMSE minimizes the worst-case MSE supθ∈Θ Eθ[(L̂ε(Y ) − L(θ))2] =

BiasΘ(L̂ε(Y ))2 + Var(L̂ε(Y )).

Since δ∗(Y ) = 1{m(θε∗)
′Y ≥ 0} = 1{L̂ε∗(Y ) ≥ 0}, the minimax regret rule δ∗(Y )

can be viewed as a rule that makes a choice according to the sign of the linear estimator

L̂ε∗(Y ). Proposition 1.2 implies that the corresponding linear estimator L̂ε∗(Y ) places

more importance on the bias than on the variance compared with the linear minimax MSE
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estimator L̂MSE(Y ). In other words, ε∗ minimizes a particular weighted average of the

squared bias and variance α ·BiasΘ(L̂ε(Y ))2 + (1− α) ·Var(L̂ε(Y )) for some α ∈ [1/2, 1].29

This result suggests that the plug-in MSE rule is not necessarily optimal under the minimax

regret criterion.

1.5.2 Minimax Regret Rules Under Point Identification of Welfare

Difference

Here, I discuss the properties of the minimax regret rule in special cases where the welfare

difference L(θ) is point identified. The starting point is the following result, a corollary of

Theorem 1.1. The minimax regret rule is locally insensitive to Θ in some special cases.

Corollary 1.1 (Robustness). Let Θ be convex and centrosymmetric, and let θ∗ ∈ V solve

supθ∈V:‖m(θ)‖≤1 L(θ), where V is the vector space that θ belongs to. Suppose that {εθ∗ : 0 ≤

ε ≤ a∗σ} ⊂ Θ. Then, the decision rule

δ∗(Y ) = 1
{
m(θ∗)′Y ≥ 0

}
is minimax regret. The minimax risk is given by R(σ; Θ) = a∗σL(θ∗)Φ(−a∗).

Proof. See Appendix 1.B.4.

Note that θ∗ depends on V, not on Θ. Corollary 1.1 implies that the minimax regret

rule and minimax risk are robust to the choice of Θ as long as Θ is large enough to contain

{εθ∗ : 0 ≤ ε ≤ a∗σ}.

Notably, the above result holds only for cases where the welfare difference L(θ) is iden-

tified when m(θ) = 0. This is because it is shown that ω(0) = 0 under the conditions in

Corollary 1.1 (see Appendix 1.B.4), which means that {L(θ) : m(θ) = 0, θ ∈ Θ} = {0}.

I illustrate this result through an example with linear regression models. This example

nests the one in Section 1.2.3 when F is a class of polynomial functions. I show that the

29. In Figure 1.10 in Appendix 1.C, I report the weight α ∈ [1/2, 1] to empirically quantify how much
importance the minimax regret rule places on the bias in the empirical illustration in Section 1.7.
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minimax regret rule is based on the best linear unbiased estimator of the parameter θ when

Θ is sufficiently large.

1.5.2.1 Example: Linear Regression Models

Suppose it is known to the policy maker that the sample Y = (Y1, ..., Yn)′ is generated by

the following linear regression model:

Y = Xθ +U , U ∼ N (0,Σ),

where X is a fixed n × k design matrix that stacks k-dimensional covariate vectors of n

units, θ ∈ Θ ⊂ V = Rk, and Σ is a known variance-covariance matrix. This model is a

special case of the general one where m(θ) = Xθ. Suppose also that the welfare difference

is given by

L(θ) = l′θ

for some known l ∈ Rk. This setup covers the example in Section 1.2.3 when F is a class of

polynomial functions.30

I normalize Y and m(·) by left multiplying them by Σ−1/2 so that the variance-

covariance matrix of the sample is a diagonal matrix:

Ỹ ∼ N (m̃(θ), In),

where Ỹ = Σ−1/2Y and m̃(θ) = X̃θ with X̃ = Σ−1/2X.

In this example, L(θ) is identified as long as the rank condition holds. To see this,

suppose that m̃(θ) = µ for some µ ∈ Rn. If X̃ is of rank k so that X̃
′
X̃ is invertible, then

θ = (X̃
′
X̃)−1X̃

′
µ, and hence L(θ) = l′(X̃

′
X̃)−1X̃

′
µ.

30. Suppose that F = FPol(p) := {f : f(x, d) = (x′, dx′)θ for some θ ∈ R2(p+1)}, where x =
(1, x, x2, ..., xp)′ ∈ Rp+1. FPol(p) is the set of functions such that f(·, d) is a polynomial function of de-
gree at most p for each d ∈ {0, 1}. Let X denote the n × 2(p + 1) matrix whose i-th row is (x′i, dix

′
i).

The model Y ∼ N (m(f),Σ) with f ∈ FPol(p) then becomes Y ∼ N (Xθ,Σ) with θ ∈ R2(p+1).
Since f(x, 1) − f(x, 0) = (x′, 1 · x′)θ − (x′, 0 · x′)θ, the welfare difference is given by L(θ) = l′θ, where
l =

(∫
1{c1 ≤ x < c0} [(x′, 1 · x′)− (x′, 0 · x′)] dν(x)

)′ ∈ R2(p+1).
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To apply Corollary 1.1, consider the following problem:

sup
θ∈Rk

l′θ s.t.
(
θ′X̃

′
X̃θ
)1/2

≤ 1.

Simple calculations show that the solution is θ∗ = (X̃
′
X̃)−1l

(l′(X̃
′
X̃)−1l)1/2

.

By Corollary 1.1, if {εθ∗ : 0 ≤ ε ≤ a∗} ⊂ Θ, the minimax regret rule is given by

δ∗(Y ) = 1
{

(X̃θ∗)′Ỹ ≥ 0
}

= 1
{
l′θ̂WLS(Y ) ≥ 0

}
,

where θ̂WLS(Y ) = (X ′Σ−1X)−1X ′Σ−1Y is the weighted least squares (WLS) estimator of

θ using Σ−1 as the weighting matrix. θ̂WLS(Y ) is the best linear unbiased estimator of θ by

the Gauss-Markov theorem. l′θ̂WLS(Y ) can be viewed as an estimator of L(θ) = l′θ.

If Θ does not contain {εθ∗ : 0 ≤ ε ≤ a∗}, the minimax regret rule does not generally

admit a closed form. When a closed form is not available, we can directly use Theorem

1.1 to calculate the minimax regret rule. The discussion in Section 1.5.1 suggests that the

minimax regret rule may use a linear estimator of L(θ) = l′θ that optimally trades off the

bias and variance.

1.6 Proof of Theorem 1.1

In this section, I provide the proof of Theorem 1.1. I provide separate arguments for the

nonrandomized and randomized rules. For each case, I first state an assumption weaker

than the conditions in Theorem 1.1, present a result under the relaxed assumption, and

then provide the proof for the more general result.

1.6.1 Nonrandomized Rule

Consider the following assumption.

Assumption 1.2 (Informative Worst Case). There exists a unique, nonzero solution to the

maximization problem maxε∈[0,a∗σ] ω(ε)Φ(−ε/σ).

An interpretation of this assumption is as follows. As discussed in Section 1.3.1, the
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maximization problem maxε∈[0,a∗σ] ω(ε)Φ(−ε/σ) corresponds to the problem of finding the

hardest one-dimensional subproblem. The hardest one-dimensional subproblem is [−θε∗ , θε∗ ],

where ε∗ ∈ arg maxε∈[0,a∗σ] ω(ε)Φ(−ε/σ) and θε∗ attains the modulus of continuity at ε∗. If

the constraint ‖m(θε∗)‖ ≤ ε∗ of the modulus problem holds with equality and Assumption

1.2 holds, ‖m(θε∗)‖ > 0. Equivalently, m(θε∗) 6= 0, which means that the signal Y under

the worst-case parameter values θε∗ and −θε∗ is informative.

The following lemma shows that Assumption 1.2 holds if σ > 2φ(0) ω(0)
ω′(0) under Assump-

tion 1.1(d).

Lemma 1.1. Suppose that ω(·) is differentiable at any ε ∈ (0, a∗σ]. Then, there exists

a unique solution to the maximization problem maxε∈[0,a∗σ] ω(ε)Φ(−ε/σ). The solution is

nonzero if and only if σ > 2φ(0) ω(0)
ω′(0) .

Proof. See Appendix 1.B.5.

I obtain a minimax regret rule under Assumption 1.2. The statement on the nonran-

domized rule in Theorem 1.1 immediately follows from the result below.

Theorem 1.2 (Nonrandomized Minimax Regret Rule). Let Θ be convex and centrosym-

metric, and suppose that Assumption 1.2 holds. Let ε∗ ∈ arg maxε∈[0,a∗σ] ω(ε)Φ(−ε/σ), and

suppose that there exists θε∗ that attains the modulus of continuity at ε∗. Then, the decision

rule δ∗(Y ) = 1 {m(θε∗)
′Y ≥ 0} is minimax regret. Here, m(θε∗) does not depend on the

choice of θε∗ among those that attain the modulus of continuity at ε∗. The minimax risk is

given by R(σ; Θ) = ω(ε∗)Φ(−ε∗/σ).

Now, I provide the proof of Theorem 1.2. The proof consists of four steps. First, I

consider the simplest problem with a univariate sample and a bounded scalar parameter.

Second, I use the result from the first step to solve one-dimensional subproblems, where the

parameter space is restricted to a one-dimensional bounded submodel. Third, I characterize

the hardest one-dimensional subproblem, that is, the one-dimensional subproblem that has

the largest minimax risk. Lastly, I show that the minimax risk in the original problem

is achieved by a minimax regret rule for the hardest one-dimensional subproblem. For

the problem of estimation and inference, Donoho (1994) splits his proof into these steps.
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However, the proof of each step is nontrivially different since the problem of policy choice

and that of estimation and inference are not nested by each other; specifically, the loss

function and the action space are different.

Step 1. Minimax Regret Rules for Univariate Problems. I begin with a class of

univariate problems. The parameter θ is a scalar and lies in Θ = [−τ, τ ] for some τ > 0.

We observe a sample Y ∼ N (θ, σ2). This setup is a special case of the general framework

where m(θ) = θ. The welfare difference is given by L(θ) = θ.

Lemma 1.2 (Univariate Problems). Suppose that Θ = [−τ, τ ] for some τ > 0, that m(θ) =

θ, and that L(θ) = θ. Then, the decision rule δ∗(Y ) = 1 {Y ≥ 0} is minimax regret. The

minimax risk is given by

Runi(σ; [−τ, τ ]) =


τΦ(−τ/σ) if τ ≤ a∗σ,

a∗σΦ(−a∗) if τ > a∗σ.

Proof. See Appendix 1.B.6.

In univariate problems, the minimax regret rule makes a choice according to the sign of

the sample Y . The minimax risk does not depend on τ as long as τ > a∗σ.

Step 2. Minimax Regret Rules for One-dimensional Subproblems. Consider the

original setup where θ resides in a vector space V. Recall that [θ̃, θ̄] = {(1− λ)θ̃ + λθ̄ : λ ∈

[0, 1]} for θ̃, θ̄ ∈ V. I use Lemma 1.2 to derive minimax regret rules and the minimax risk

for one-dimensional subproblems of the form [−θ̄, θ̄] with L(θ̄) > 0 and m(θ̄) 6= 0.

Lemma 1.3 (Informative One-dimensional Subproblems). Suppose that Θ = [−θ̄, θ̄], where

θ̄ ∈ V, L(θ̄) > 0, and m(θ̄) 6= 0. Then, the decision rule δ∗(Y ) = 1
{
m(θ̄)′Y ≥ 0

}
is

minimax regret. The minimax risk is given by

R(σ; [−θ̄, θ̄]) =
L(θ̄)

‖m(θ̄)‖
Runi(σ; [−‖m(θ̄)‖, ‖m(θ̄)‖]).

Proof. See Appendix 1.B.7.
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In one-dimensional subproblems, the minimax regret rule chooses policy 1 if the sample

Y agrees more with θ̄ (or m(θ̄)′Y > 0) and chooses policy 0 if the sample Y agrees more

with −θ̄ (or m(θ̄)′Y < 0).

Step 3. Hardest One-dimensional Subproblems. Using Lemma 1.3, I characterize

the supremum of the minimax risk R(σ; [−θ̄, θ̄]) over all one-dimensional subproblems of the

form [−θ̄, θ̄], where θ̄ ∈ Θ, L(θ̄) > 0, and m(θ̄) 6= 0.

First, let ε∗ be the unique solution to maxε∈[0,a∗σ] ω(ε)Φ(−ε/σ), which is positive under

Assumption 1.2. Let θε∗ attain the modulus of continuity at ε∗. Lemma 1.B.2 in Appendix

1.B.1 shows that the constraint ‖m(θε∗)‖ ≤ ε∗ of the modulus problem holds with equality.

As a result, we obtain

R(σ; [−θε∗ , θε∗ ]) =
L(θε∗)

‖m(θε∗)‖
Runi(σ; [−‖m(θε∗)‖, ‖m(θε∗)‖])

=
ω(ε∗)

ε∗
Runi(σ; [−ε∗, ε∗])

= ω(ε∗)Φ(−ε∗/σ),

where the first equality follows from Lemma 1.3 and the last follows from Lemma 1.2 and

the fact that ε∗ ≤ a∗σ.

Now, I use the modulus of continuity ω(ε) to write

sup
θ̄∈Θ:L(θ̄)>0,m(θ̄)6=0

R(σ; [−θ̄, θ̄]) = sup
θ̄∈Θ:L(θ̄)>0,m(θ̄)6=0

L(θ̄)

‖m(θ̄)‖
Runi(σ; [−‖m(θ̄)‖, ‖m(θ̄)‖])

= sup
ε>0

{
sup

θ̄∈Θ:‖m(θ̄)‖=ε

L(θ̄)

‖m(θ̄)‖
Runi(σ; [−‖m(θ̄)‖, ‖m(θ̄)‖])

}

= sup
ε>0

{
supθ̄∈Θ:‖m(θ̄)‖=ε L(θ̄)

ε
Runi(σ; [−ε, ε])

}

≤ sup
ε>0

ω(ε)

ε
Runi(σ; [−ε, ε]),
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where the last inequality holds by the definition of ω(ε). By Lemma 1.2,

ω(ε)

ε
Runi(σ; [−ε, ε]) =


ω(ε)Φ(−ε/σ) if ε ≤ a∗σ,

ω(ε)
ε a∗σΦ(−a∗) if ε > a∗σ.

Since ω(ε) is concave, ω(ε)
ε is nonincreasing, so that supε>a∗σ

ω(ε)
ε a∗σΦ(−a∗) =

ω(a∗σ)Φ(−a∗). Therefore,

sup
ε>0

ω(ε)

ε
Runi(σ; [−ε, ε]) = sup

0<ε≤a∗σ
ω(ε)Φ(−ε/σ) = ω(ε∗)Φ(−ε∗/σ).

Hence, supθ̄∈Θ:L(θ̄)>0,m(θ̄)6=0R(σ; [−θ̄, θ̄]) ≤ ω(ε∗)Φ(−ε∗/σ).

Since R(σ; [−θε∗ , θε∗ ]) = ω(ε∗)Φ(−ε∗/σ), it follows that

sup
θ̄∈Θ:L(θ̄)>0,m(θ̄)6=0

R(σ; [−θ̄, θ̄]) = R(σ; [−θε∗ , θε∗ ]) = ω(ε∗)Φ(−ε∗/σ).

Therefore, [−θε∗ , θε∗ ] is one of the hardest one-dimensional subproblems. Its minimax risk

is ω(ε∗)Φ(−ε∗/σ).

Step 4. Minimax Regret Rules for the Original Problem. By Lemma 1.3, the deci-

sion rule δ∗(Y ) = 1 {m(θε∗)
′Y ≥ 0} is minimax regret for the one-dimensional subproblem

[−θε∗ , θε∗ ]. Since m(θε∗)
′Y ∼ N (m(θε∗)

′m(θ), σ2‖m(θε∗)‖2) under θ, the maximum regret

of δ∗ over Θ is given by

max
θ∈Θ

R(δ∗, θ) = max
θ∈Θ

[
(L(θ))+Φ

(
−m(θε∗)

′m(θ)

σ‖m(θε∗)‖

)
+ (−L(θ))+

(
1− Φ

(
−m(θε∗)

′m(θ)

σ‖m(θε∗)‖

))]
= max

θ∈Θ:L(θ)>0
L(θ)Φ

(
−m(θε∗)

′m(θ)

σ‖m(θε∗)‖

)
,

where x+ = max{x, 0} and the second equality holds by the symmetry of the objective

function and the centrosymmetry of Θ.

The following lemma is fundamental to characterizing minimax regret rules for the orig-

inal problem.
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Lemma 1.4 (Worst Case for Nonrandomized Rule). Under the conditions in Theorem 1.2,

θε∗ ∈ arg max
θ∈Θ:L(θ)>0

L(θ)Φ

(
−m(θε∗)

′m(θ)

σ‖m(θε∗)‖

)
.

Proof. See Appendix 1.B.8.

By Lemma 1.4, the maximum regret of the decision rule δ∗ over Θ is attained at θε∗ .

Therefore,

max
θ∈Θ

R(δ∗, θ) = max
θ∈[−θε∗ ,θε∗ ]

R(δ∗, θ) = R(σ; [−θε∗ , θε∗ ]),

where the last equality holds since δ∗ is minimax regret for [−θε∗ , θε∗ ]. However, by definition,

max
θ∈Θ

R(δ∗, θ) ≥ R(σ; Θ) ≥ R(σ; [−θε∗ , θε∗ ]).

It follows that maxθ∈ΘR(δ∗, θ) = R(σ; Θ) = R(σ; [−θε∗ , θε∗ ]), and hence δ∗ is minimax

regret for Θ. The minimax risk for the original problem is the same as that for the hardest

one-dimensional subproblem [−θε∗ , θε∗ ].

Lastly, Lemma 1.B.2 in Appendix 1.B.1 shows thatm(θε∗) does not depend on the choice

of θε∗ among those that attain the modulus of continuity at ε∗, which completes the proof

of Theorem 1.2.

1.6.2 Randomized Rule

Consider the following assumption.

Assumption 1.3 (Regularity for Randomized Rule). The following holds for some ε̄ > 0.

(a) For all ε ∈ [0, ε̄], there exists θε ∈ Θ that attains the modulus of continuity at ε with

‖m(θε)‖ = ε.

(b) There exists w∗ ∈ Rn such that limε→0 ε
−1
(
w∗ − m(θε)

‖m(θε)‖

)
= 0.
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(c) There exists σ∗ ≥ σ such that 0 ∈ arg maxε∈R ρ(ε)Φ (−ε/σ∗), where ρ(ε) :=

sup {L(θ) : (w∗)′m(θ) = ε, θ ∈ Θ} for ε ∈ R.31

Assumption 1.3(a) is slightly stronger than Assumption 1.1(a) since it requires that the

constraint ‖m(θε)‖ ≤ ε of the modulus problem hold with equality. Assumption 1.3(b) is

the same as Assumption 1.1(b).

Given σ∗, the maximization problem maxε∈R ρ(ε)Φ (−ε/σ∗) described in Assumption

1.3(c) corresponds to the problem of finding the worst-case parameter values for a random-

ized decision rule δ(Y ) = Prξ∼N (0,(σ∗)2−σ2) ((w∗)′Y + ξ ≥ 0). Later, I will show that, under

Assumption 1.3(c), we can find the variance of the artificial noise ξ such that the maximum

regret of δ is attained at a value of θ that attains the modulus of continuity at ε = 0.

The following lemma shows that these conditions hold if σ ≤ 2φ(0) ω(0)
ω′(0) under Assump-

tion 1.1.

Lemma 1.5. Let Θ be convex and centrosymmetric, and suppose that Assumption 1.1

holds. Then, Assumption 1.3(a) holds. Moreover, 0 ∈ arg maxε∈R ρ(ε)Φ (−ε/σ∗) with

σ∗ = 2φ(0) ω(0)
ω′(0) .

Proof. See Appendix 1.B.9.

I obtain a minimax regret rule under Assumption 1.3. The statement on the randomized

rule in Theorem 1.1 immediately follows from the following result.

Theorem 1.3 (Randomized Minimax Regret Rule). Let Θ be convex and centrosymmetric,

and suppose that Assumption 1.3 holds. Then, the following decision rule is minimax regret:

δ∗(Y ) =


1{(w∗)′Y ≥ 0} if σ∗ = σ,

Φ

(
(w∗)′Y

((σ∗)2 − σ2)1/2

)
if σ∗ > σ.

The minimax risk is given by R(σ; Θ) = ω(0)/2.

31. I allow the search space of σ∗ to contain ∞, letting Φ(x/∞) = 1/2 for all x ∈ R. Assumption 1.3(c)
then holds with σ∗ =∞ in Stoye (2012)’s setup described in Section 1.3.5 when b ≥ 1.
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Note that if ω(·) is differentiable at any ε ∈ (0, a∗σ] and σ ≤ 2φ(0) ω(0)
ω′(0) , ε

∗ = 0 by

Lemma 1.1, where ε∗ ∈ arg maxε∈[0,a∗σ] ω(ε)Φ(−ε/σ). The minimax risk ω(0)/2 can then be

written as ω(ε∗)Φ(−ε∗/σ), leading to the expression in Theorem 1.1.

Below, I provide the proof of Theorem 1.3. Note first that w∗ is a unit vector by

construction. Hence, (w∗)′Y ∼ N
(
(w∗)′m(θ), σ2

)
. Simple calculations show that δ∗ is

equivalent to δ∗(Y ) = Prξ∼N (0,(σ∗)2−σ2) ((w∗)′Y + ξ ≥ 0). Since (w∗)′Y + ξ ∼ N
(
0, (σ∗)2

)
if Y ∼ N (0, σ2In), it follows that EY ∼N (0,σ2In)[δ

∗(Y )] = 1
2 . The following lemma shows

that δ∗ is minimax regret for the one-dimensional subproblem [−θ0, θ0], where θ0 attains the

modulus of continuity at 0 and hence m(θ0) = 0.

Lemma 1.6 (Uninformative One-dimensional Subproblems). Suppose that Θ = [−θ̄, θ̄],

where θ̄ ∈ V, L(θ̄) ≥ 0, and m(θ̄) = 0. Then, any decision rule δ∗ such that

EY ∼N (0,σ2In)[δ
∗(Y )] = 1

2 is minimax regret. The minimax risk is given by R(σ; [−θ̄, θ̄]) =

L(θ̄)/2.

Proof. See Appendix 1.B.10.

If m(θ̄) = 0, Y ∼ N (0, σ2In) under any θ ∈ [−θ̄, θ̄]. Lemma 1.6 shows that choosing

each policy with probability one half over the distribution of Y is minimax regret for the

subproblem [−θ̄, θ̄].

Since (w∗)′Y + ξ ∼ N
(
(w∗)′m(θ), (σ∗)2

)
under θ, the maximum regret of δ∗ over Θ is

given by

max
θ∈Θ

R(δ∗, θ) = max
θ∈Θ

[
(L(θ))+Φ

(
−(w∗)′m(θ)

σ∗

)
+ (−L(θ))+

(
1− Φ

(
−(w∗)′m(θ)

σ∗

))]
= max

θ∈Θ
L(θ)Φ

(
−(w∗)′m(θ)

σ∗

)
,

where the second equality holds by the symmetry of the objective function and the cen-

trosymmetry of Θ. The following lemma shows that the maximum regret is attained at

θ0.

Lemma 1.7 (Worst Case for Randomized Rule). Under the conditions in Theorem 1.3,

θ0 ∈ arg max
θ∈Θ

L(θ)Φ

(
−(w∗)′m(θ)

σ∗

)
.
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Proof. See Appendix 1.B.11.

From the above results, we obtain

max
θ∈Θ

R(δ∗, θ) = max
θ∈[−θ0,θ0]

R(δ∗, θ) = R(σ; [−θ0, θ0]),

where the last equality holds since δ∗ is minimax regret for [−θ0, θ0]. However, by definition,

max
θ∈Θ

R(δ∗, θ) ≥ R(σ; Θ) ≥ R(σ; [−θ0, θ0]).

It follows that maxθ∈ΘR(δ∗, θ) = R(σ; Θ) = R(σ; [−θ0, θ0]), and hence δ∗ is minimax regret

for Θ. The minimax risk is given by R(σ; [−θ0, θ0]) = L(θ0)/2 = ω(0)/2.

1.7 Empirical Policy Application

I now illustrate my approach in an empirical application to the BRIGHT program in Burkina

Faso. I consider the hypothetical problem of whether or not to expand the program and

empirically compare the performance of the minimax regret rule with alternative decision

rules.

1.7.1 Background and Data

The goal of the BRIGHT program was to improve children’s and especially girls’ educational

outcomes in rural villages by constructing well-resourced village-based schools. The program

was funded by the Millennium Challenge Corporation, a U.S. government agency, and im-

plemented by a consortium of non-governmental organizations. The program constructed

primary schools with three classrooms for grades 1 to 3 in 132 villages from 47 departments

during the period from 2005 to 2008. The Ministry of Education determined the villages

where schools would be built through the following process.

1. 293 villages were nominated based on low school enrollment rates.

2. The Ministry administered a survey in each village and assigned each village a score

using a set formula. The formula attached large weight to the estimated number of

41



Figure 1.1: Distribution of Relative Score

Notes: This figure shows the histogram of the relative score of villages on the interval [−2.5, 2.5]. The vertical
dashed line indicates the new cutoff −0.256, which corresponds to the hypothetical policy of constructing schools in
previously ineligible villages whose relative scores are in the top 20%. The villages with zero observed enrollment
rates are excluded.

children to be served from the nominated and neighboring villages, giving additional

weight to girls.

3. The Ministry ranked villages within each department and selected the top half of the

villages to receive a school.

For further details on the BRIGHT program and allocation process, see Levy, Sloan, Linden

and Kazianga (2009) and Kazianga et al. (2013).

Since the school allocation was determined at department level, the cutoff score for

the program eligibility was different across departments. Following Kazianga et al. (2013), I

define the relative score as the score for each village minus the cutoff score for the department

that the village belongs to. As a result, a village is eligible for the program when the relative

score is larger than zero. Kazianga et al. (2013) use the relative score as a running variable

and evaluate the causal effect of the program on educational outcomes using a regression

discontinuity design. Figure 1.1 reports the distribution of the relative score.

I use the replication data for Kazianga et al. (2013)’s results (Kazianga, Levy, Linden
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Table 1.1: Child Educational Outcomes and Characteristics

All Eligible Ineligible
villages villages

(1) (2) (3)

Panel A. Educational outcomes (child-level means)

Enrollment 0.366 0.494 0.259
Normalized total test scores 0.000 0.248 −0.209
Highest grade child has achieved 0.876 1.132 0.636

Panel B. Child and household characteristics (child-level means)

Child’s age 8.121 8.174 8.071
Child is female 0.503 0.476 0.525
Head’s age 47.653 47.387 47.904
Head years of schooling 0.156 0.198 0.117
Number of members 10.812 10.815 10.808
Number of children 5.971 6.098 5.850
Muslim 0.587 0.576 0.597
Basic roofing 0.516 0.534 0.500
Number of motorbikes 0.299 0.319 0.279
Number of phones 0.185 0.199 0.172

Total number of children 23,282 10,645 12,637
Total number of villages 287 136 151

Notes: This table reports child-level averages of educational outcomes and characteristics by program eligibility in
the year 2008, namely 2.5 years after the start of the BRIGHT program. Panel A reports the educational outcomes’
means. Panel B reports the means of child and household characteristics. Column (1) shows the means for children in
all villages. Columns (2) and (3) show the means for children in villages selected for BRIGHT school and in unselected
villages, respectively.

and Sloan, 2019) and consider whether we should expand the program or not. I explain

the details of the counterfactual policy in Section 1.7.2. The dataset contains survey results

about 30 households from 287 nominated villages, yielding a total sample of 23,282 children

between the ages of 5 and 12. The survey was conducted in 2008, namely 2.5 years after

the start of the program. Table 1.1 reports summary statistics about child educational

outcomes and characteristics. Children in eligible villages are more likely to attend school,

achieve higher test scores, and complete a higher grade. Household heads in eligible villages

completed slightly more years of schooling. Furthermore, households in eligible villages tend

to have more assets such as basic roofing and motorbikes.

I consider school enrollment as the target outcome. Since the score and program eli-

gibility are determined at village level, I use the village-level mean outcome, namely the

enrollment rate for each village. This setting fits into the setup in Section 1.2.3, where i

represents a village, Yi is the observed enrollment rate of village i, di is the program eligi-
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bility, and xi is the relative score. The original cutoff is c0 = 0, that is, di = 1{xi ≥ 0}.

The parameter is a function f : R×{0, 1} → R, where f(x, d) represents the counterfactual

mean of the enrollment rate conditional on the relative score if the eligibility status were

set to d ∈ {0, 1}. Since Yi is a village-level sample mean, it is plausible to assume that Yi

is approximately normally distributed. I use the conventional standard error of the sample

mean Yi as the standard deviation of Yi.32

1.7.2 Hypothetical Policy Choice Problem

I ask whether we should scale up the program and build BRIGHT schools in other villages.

Specifically, I consider the following decision problem. The counterfactual policy is to build

BRIGHT schools in previously ineligible villages whose relative scores are in the top 20%,

which corresponds to lowering the cutoff from 0 to −0.256.33 I use the average enrollment

rate across villages as the welfare criterion, so that the welfare effect of this policy relative

to the status quo is

L(f) =
1

n

n∑
i=1

1{−0.256 ≤ xi < 0}[f(xi, 1)− f(xi, 0)].

When deciding whether to implement the policy, it is important to consider the benefit

relative to the cost. Kazianga et al. (2013) provide an estimate of the cost of constructing

a BRIGHT school, which is $4,758 per village.34 To incorporate the cost into the decision

problem, I suppose that the policy maker cares about the cost-effectiveness of this new policy

relative to similar programs. Cost-effectiveness is defined as the ratio of the policy cost to

the increase in the target outcome, namely the enrollment in the current context. I assume

that it is optimal to implement the policy if its cost-effectiveness is smaller than $83.77,

32. The observed enrollment rate is zero in 21 out of 287 villages. I exclude these villages from the analysis
since the standard error of Yi is zero.

33. Figure 1.11 in Appendix 1.C reports the results when I use 10% and 30% instead of 20%. As predicted
by the result in Section 1.4, the minimax regret rule switches from a nonrandomized rule to a randomized
rule at a smaller Lipschitz constant C when the fraction of the target villages is larger.

34. I assume that the cost estimate is a known quantity and is constant across villages. It is, however,
natural to think of the policy cost as unknown and heterogeneous across villages and to introduce the cost
model on top of the outcome model. I leave this for future work.
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which is the cost-effectiveness of a school construction program in Indonesia (Duflo, 2001;

Kazianga et al., 2013). Specifically, it is optimal to implement the policy if

$4,758
416 · 1

ñ

∑n
i=1 1{−0.256 ≤ xi < 0}[f(xi, 1)− f(xi, 0)]

≤ $83.77,

where 416 is the number of children per village and ñ =
∑n

i=1 1{−0.256 ≤ xi < 0} is the

number of villages that would receive a school under the new policy.35 The denominator rep-

resents the increase in the average enrollment across villages that would receive a BRIGHT

school under the new policy.

Simple calculations show that the above condition is equivalent to

1

n

n∑
i=1

1{−0.256 ≤ xi < 0}[f(xi, 1)− 0.137− f(xi, 0)] ≥ 0.

My method can be used to consider this decision problem by setting the outcome to Yi −

0.137di, where 0.137 can be viewed as the policy cost measured in the unit of the enrollment

rate. I present the results for this scenario with the cost of 0.137 as well as for the scenario

where we ignore the policy cost.

I implement my method assuming that the counterfactual outcome function f belongs to

the Lipschitz class FLip(C). Since the relative score xi is computed based on several village-

level characteristics, it is difficult to interpret and specify the Lipschitz constant C using

domain-specific knowledge. To obtain a reasonable range of C, I estimate a lower bound

on C using the method described in Section 1.4.1, which yields the lower bound estimate of

0.149.36 I present the results for C ∈ {0.05, 0.1, ..., 0.95, 1} and examine their sensitivity to

the choice of C.

35. The cost per village and the cost-effectiveness of a school construction program in Indonesia are found
in Tables A18 and A20, respectively, in Online Appendix of Kazianga et al. (2013). I compute the number of
children per village by dividing the total enrollment by the enrollment rate reported in Table A17 in Online
Appendix of Kazianga et al. (2013).

36. I estimate ∂f(x,0)
∂x

at x ∈ {−2.5,−2.45, ...,−0.05} and ∂f(x,1)
∂x

at x ∈ {0.05, 0.1, ..., 2.5} by local quadratic
regression and take the maximum of their absolute values. For local quadratic regression, I use the MSE-
optimal bandwidth selection procedure by Calonico, Cattaneo and Farrell (2018), which can be implemented
by R package “nprobust.”
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Figure 1.2: Optimal Decisions: Probability of Choosing the New Policy

Notes: This figure shows the probability of choosing the new policy computed by the minimax regret rule. The new
policy is to construct BRIGHT schools in previously ineligible villages whose relative scores are in the top 20%. The
solid line shows the results for the scenario where we ignore the policy cost. The dashed line shows the results for the
scenario where the policy cost measured in the unit of the enrollment rate is 0.137. I report the results for the range
[0.05, 0.1, ..., 0.95, 1] of the Lipschitz constant C.

1.7.3 Results

Figure 1.2 plots δ∗(Y ), the probability of choosing the new policy computed by the minimax

regret rule, against the Lipschitz constant C. When C < 0.6, the minimax regret rule is

nonrandomized. It chooses the new policy in the no-cost scenario and maintains the status

quo in the scenario where the policy cost is 0.137. When C ≥ 0.6, on the other hand, the

minimax regret rule is randomized. The decisions become more mixed as C increases.

Given that the estimate of the lower bound on C is 0.149, the minimax regret rule

is nonrandomized when C is less than four times the estimated lower bound. Under this

reasonable range of C, the optimal decision is the same in each scenario. If the policy maker

wants to be more conservative about the choice of C, they need to randomize their decisions.

The above analysis considers the scenario where the policy cost is fixed at 0.137. To

examine the sensitivity of the result to the policy cost, I compute the maximum of the cost

values under which the minimax regret rule chooses the new policy with probability one,

reported in Figure 1.3. If the policy cost is less than this value, it is optimal to choose the

new policy; otherwise, it is optimal to maintain the status quo. The result shows that, when
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Figure 1.3: Maximum of Cost Values Under Which Choosing the New Policy is Optimal

Notes: This figure shows the maximum of the cost values under which the minimax regret rule chooses the new policy
with probability one. The horizontal line shows the cost of 0.137, which is my main specification of the policy cost. I
only report the results for the Lipschitz constant C < 0.6 since the minimax regret rule is randomized for C ≥ 0.6.

C is above its lower bound 0.149, it is optimal to maintain the status quo as long as the

policy cost is higher than 0.10.

If the minimax regret rule is nonrandomized, the rule is of the form δ∗(Y ) =

1{
∑n

i=1wiYi ≥ 0} for some weights wi’s. Panels (a) and (b) of Figure 1.4 plot the weight wi

attached to each village against the relative score xi for C = 0.1 and C = 0.5, respectively.

In the plots, the size of circles is proportional to the inverse of the standard error of the

enrollment rate Yi. For both C = 0.1 and C = 0.5, a few treated units just above the

original cutoff (the solid vertical line) receive a positive weight, the untreated units between

the original cutoff and the new cutoff (the dashed vertical line) receive a negative weight,

and no other units receive any weight. When C = 0.1, the weight tends to be larger for

units with a smaller standard error. When C = 0.5, a positive weight is attached only to the

treated unit closest to the original cutoff. Additionally, the weights on the untreated units

between the two cutoffs are almost identical. This situation corresponds to the minimax

regret rule of the form δ∗(Y ) = 1
{
Y+,min − 1

ñ

∑
i:c1≤xi<c0 Yi ≥ 0

}
discussed in Section 1.4.
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Figure 1.4: Weight to Each Village Attached by Minimax Regret Rule

(a) C = 0.1 (b) C = 0.5

Notes: This figure shows the weight wi attached to each village by the minimax regret rule of the form δ∗(Y ) =
1{
∑n
i=1 wiYi ≥ 0}. The weights are normalized so that

∑n
i=1 w

2
i = 1. The horizontal axis indicates the relative

score of each village. Each circle corresponds to each village. The size of circles is proportional to the inverse of the
standard error of the enrollment rate Yi. The vertical dashed line corresponds to the new cutoff −0.256. Panels (a)
and (b) show the results when the Lipschitz constant C is 0.1 and 0.5, respectively.

1.7.3.1 Comparison with Plug-in Rules

I compare the minimax regret rule with plug-in decision rules that make a decision according

to the sign of an estimator of the policy effect. I consider three estimators of the policy effect.

1. The linear minimax MSE estimator (Donoho, 1994), described in Section 1.5.1, under

the Lipschitz class FLip(C).

2. The linear minimax MSE estimator under the additional assumption of constant con-

ditional treatment effects. In other words, I construct the estimator assuming that

F = {f ∈ FLip(C) : f(x, 1)− f(x, 0) = f(x̃, 1)− f(x̃, 0) for all x, x̃}. This estimation

corresponds to first nonparametrically estimating the average treatment effect at the

original cutoff and then extrapolating the effects on the units between the two cutoffs

by the constant effects assumption.

3. The polynomial regression estimator (Kazianga et al., 2013).37 Given the degree of

polynomial p, I first estimate the model f(x, d) = α0 +α1x+ · · ·+αpxp+β0d+β1d ·x+

· · ·βpd · xp by the weighted least squares regression using 1/σ2(xi, di) as the weight.38

37. Kazianga et al. (2013) estimate the treatment effect at the cutoff, not the effect on the units away
from the cutoff. They apply global polynomial regression RD estimators to child-level data.

38. This is equivalent to the OLS regression of Yi/σ(xi, di) on (1, x, ..., xp, d, d · x, ..., d · xp)′/σ(xi, di).
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Figure 1.5: Estimated Effects of New Policy on Enrollment Rate

(a) Minimax MSE Estimator Under Lipschitz
Class

(b) Polynomial Regression Estimator

Notes: This figure shows the average effect of the new policy on the enrollment rate across the villages that would re-
ceive a school under the new policy. Panel (a) reports the estimates from the linear minimax MSE estimators with and
without the assumption of constant conditional treatment effects. I report the results for the range [0.05, 0.1, ..., 0.95, 1]
of the Lipschitz constant C. Panel (b) reports the estimates from the polynomial regression estimators of degrees 1
to 5. The horizontal line shows the cost of 0.137, which is my main specification of the policy cost.

I then estimate L(f) by 1
n

∑n
i=1 1{−0.256 ≤ xi < 0}[f̂(xi, 1) − f̂(xi, 0)], where f̂ is

the estimated polynomial function. This estimator relies on the functional form of f

to extrapolate f(xi, 1) for the untreated units.

Panel (a) of Figure 1.5 reports the estimated policy effects from the linear minimax

MSE estimators with and without constant conditional treatment effects. Overall, these

two estimators exhibit a similar pattern. While the estimated policy effects are larger than

the policy cost when C is close to zero, they are smaller than the policy cost when C

is moderate or large. For C ≥ 0.2, the resulting decisions about whether to choose the

new policy are the same as the decision made by the minimax regret rule until C reaches

0.6, where the minimax regret rule starts to randomize. In contrast, the estimated policy

effects from the polynomial regression estimators of degrees 1 to 5 exceed the policy cost,

as reported in Panel (b) of Figure 1.5. The estimates appear to be close to the simple mean

outcome difference between eligible and ineligible villages that can be computed from Table

1.1. The resulting decisions are different from the decision made by the minimax regret

rule.39

39. The estimators presented here can be written as
∑n
i=1 wiYi for some weights wi’s. See Figure 1.8 in

Appendix 1.C for the plots of these weights. While the linear minimax MSE estimators attach weights to
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Figure 1.6: Maximum Regret of Minimax Regret Rule and Plug-in MSE Rules

Notes: This figure shows the maximum regret of the minimax regret rule and the plug-in rules based on the linear
minimax MSE estimators with and without the assumption of constant conditional treatment effects. The maximum
regret is normalized so that the unit is the same as that of the enrollment rate. I report the results for the range
[0.05, 0.1, ..., 0.95, 1] of the Lipschitz constant C.

The above estimates and resulting decisions are computed from a particular realization

of the sample. To assess the ex ante performance of different decision rules, I compute the

maximum regret of these rules when the true function class is FLip(C).40 Figure 1.6 reports

the result for the minimax regret rule and the plug-in rules based on the linear minimax MSE

estimators with and without constant conditional treatment effects.41 The maximum regret

of the plug-in MSE rule with constant conditional treatment effects is much larger than that

of the other two, especially when the Lipschitz constant C is large. The plug-in MSE rule

without constant conditional treatment effects performs worse than the minimax regret rule,

as predicted by the theoretical analysis. The ratio of the maximum regret between the two

rules is maximized at C = 0.6, where the minimax regret rule starts to randomize.

units just above the original cutoff and to units between the two cutoffs, polynomial regression estimators
attach weights even to units further away from the cutoffs.

40. I compute the maximum regret of the minimax regret rule using the formula in Theorem 1.1. For the
other rules, I adapt the approach by Ishihara and Kitagawa (2021) to numerically calculate the maximum
regret in this setup.

41. See Figure 1.9 in Appendix 1.C for the result for the plug-in rules based on polynomial regression
estimators. The maximum regret of these rules is significantly larger than that of alternative rules.
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Figure 1.7: Maximum Regret Under Misspecification of Lipschitz Constant C

Notes: This figure shows the maximum regret of the minimax regret rule and the plug-in rules based on the linear
minimax MSE estimators with and without the assumption of constant conditional treatment effects, which are
constructed assuming that the Lipschitz constant C is 0.3. The maximum regret is computed by setting the true C
to the value on the horizontal axis. The solid line indicates the maximum regret that can be achieved if C is correctly
specified. The maximum regret is normalized so that the unit is the same as that of the enrollment rate. I report the
results for the range [0.05, 0.1, ..., 0.95, 1] of the true Lipschitz constant C.

1.7.3.2 Sensitivity to Misspecification of Lipschitz Constant C

So far, I have constructed decision rules assuming that the Lipschitz constant C is known,

which is a crucial assumption in my theoretical analysis. To assess the sensitivity of the

performance to misspecification of C, I construct decision rules assuming C = 0.3 and then

compute their maximum regret when the true value of C lies in {0.05, 0.1, ..., 0.95, 1}.

Figure 1.7 reports the result. The solid line indicates the “oracle” maximum regret,

which can be achieved if we correctly specify C. The result shows that the plug-in MSE rule

without constant conditional treatment effects performs slightly better than the minimax

regret rule when the true C is close to zero. On the other hand, the minimax regret rule

outperforms the plug-in MSE rule with nonnegligible differences for any value of the true

C greater than 0.2. The result suggests that the minimax regret rule is more robust to

misspecification of C toward zero than the plug-in MSE rule.

The potential superiority of the minimax regret rule seems consistent with the theoretical

results in the following way. As shown in Section 1.4, when the true value of C is large,

the oracle minimax regret rule only uses the treated units just above the original cutoff and
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the untreated units between the original and new cutoffs (see Panel (b) of Figure 1.4). If

the specified C is smaller than the true value, the resulting minimax regret rule is closer

to the oracle rule than the plug-in MSE rule since the minimax regret rule places more

importance on the bias than the plug-in MSE rule as discussed in Section 1.5.1. Therefore,

it is expected that the minimax regret rule performs better than the plug-in MSE rule under

misspecification of C toward zero.

1.8 Conclusion and Future Directions

This chapter develops an optimal procedure for using data to make policy decisions in

settings where social welfare under each counterfactual policy is only partially identified.

I derive a decision rule that achieves the minimax regret optimality in finite samples and

within the class of all decision rules. I apply the result to the problem of eligibility cutoff

choice and illustrate it in an empirical application to a school construction program in

Burkina Faso.

While my application focuses on eligibility rules based on a scalar variable, it is possible to

apply my approach to a choice of treatment assignment policy based on multiple covariates.

My method can also be applied to the problem of deciding whether to introduce a new policy

using data from a randomized experiment when the experiment has imperfect compliance

or when the experimental sample is a selected subset of the target population. I plan to

apply my general result to these scenarios and provide an empirical illustration.

Several extensions of my work are possible. First, my result relies on the assumption that

the sample is normally distributed with a known variance. It is challenging but natural to

consider the asymptotic optimality without the distributional assumption, for example, by

extending the limits of experiments framework of Hirano and Porter (2009) to setups with

partial identification and restricted parameter spaces. Second, my approach only covers

a binary choice problem. It is both theoretically and practically important to extend the

analysis to a multiple or continuous policy space. Lastly, while this work focuses on one-shot

decision making, it may in practice be possible to make a policy change again after observing

the result of a previous policy choice for a certain period of time. It would be interesting to

52



consider such sequential decision problems.

Appendices

1.A Additional Results and Details

1.A.1 Example: Optimal Treatment Assignment Policy Under

Unconfoundedness

The basic setup is the same as the one in Section 1.2.3. I generalize it in three ways. First,

the covariates xi are k dimensional, where k ≥ 1. Second, I remove the assumption that

di = 1{xi ≥ 0} and instead assumes the unconfoundedness (i.e., the observed treatment is

independent of potential outcomes conditional on covariates). These first two do not change

the notation of the data-generating process:

Y ∼ N (m(f),Σ),

where Y = (Y1, ..., Yn)′, m(f) = (f(x1, d1), ..., f(xn, dn))′, and Σ =

diag(σ2(x1, d1), ..., σ2(xn, dn)). Under unconfoundedness, we can interpret f(x, d) as

the counterfactual mean outcome for those with covariates x under treatment status d (see

footnote 12).

Third, two alternative policies are functions πa : Rk → [0, 1], a ∈ {0, 1}, where πa(x) is

the probability of assigning treatment to individuals whose covariates are x ∈ Rk. Suppose

that the welfare under policy a, a ∈ {0, 1}, is an average of the counterfactual mean outcome

across different values of covariates

Wa(f) =

∫
[f(x, 1)πa(x) + f(x, 0)(1− πa(x))]dν(x)

for some known measure ν. The welfare difference between the two policies is

L(f) = W1(f)−W0(f) =

∫
(π1(x)− π0(x))(f(x, 1)− f(x, 0))dν(x).
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One example of the function class F is the Lipschitz class with a known Lipschitz constant

C ≥ 0:

FLip(C) = {f : |f(x, d)− f(x̃, d)| ≤ C‖x− x̃‖ for every x, x̃ ∈ Rk and d ∈ {0, 1}}.

1.A.2 Comparison with Hypothesis Testing Rules

Hypothesis testing can be viewed as an alternative procedure for deciding between two

policies. Here, I compare the minimax regret rule with a class of hypothesis testing rules.

To define it, suppose Θ is convex and centrosymmetric, and consider testing

H0 : L(θ) ≤ −b and θ ∈ Θ vs. H1 : L(θ) ≥ b and θ ∈ Θ

for some b > 0. Let θ(b) solve infθ∈Θ:L(θ)≥b ‖m(θ)‖. For any level α > 0, the minimax

test, which has the largest minimum power under H1, is given by the Neyman-Pearson

test of H0 : θ = −θ(b) vs. H1 : θ = θ(b) (Armstrong and Kolesár, 2018, Lemma A.2). It

rejects H0 if the test statisticm(θ(b))′Y is greater than its 1−α quantile under −θ(b). Since

m(θ(b))′Y ∼ N (−‖m(θ(b))‖2, σ2‖m(θ(b))‖2) under −θ(b), the critical value is −‖m(θ(b))‖2+

z1−ασ‖m(θ(b))‖, where z1−α is the 1−α quantile of a standard normal variable. The level-α

minimax test is then given by

δα,b(Y ) = 1{m(θ(b))′Y ≥ −‖m(θ(b))‖2 + z1−ασ‖m(θ(b))‖}.

I call such tests hypothesis testing rules.

Are there any hypothesis testing rules that exactly match the minimax regret rule? Let

ε∗ > 0 solve maxε∈[0,a∗σ] ω(ε)Φ(−ε/σ), and let θε∗ solve the modulus of continuity at ε∗ with

‖m(θε∗)‖ = ε∗. By the duality of the problem, θε∗ also solves infθ∈Θ:L(θ)≥b∗ ‖m(θ)‖, where

b∗ = ω(ε∗). Let α∗ satisfy −‖m(θε∗)‖+z1−α∗σ = 0, i.e., α∗ = Φ(−ε∗/σ), so that the critical

value is zero. For this choice of α∗ and b∗, the hypothesis testing rule is

δα∗,b∗(Y ) = 1{m(θε∗)
′Y ≥ 0},
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which is identical to the minimax regret rule. Since ε∗ ≤ a∗σ, we can obtain a lower

bound on α∗: α∗ = Φ(−ε∗/σ) ≥ Φ(−a∗) ≈ 0.226. Therefore, the minimax regret rule is

less conservative in rejection of the null hypothesis than hypothesis testing rules that use

conventional levels such as 0.01 and 0.05. This is consistent with the fact that the minimax

regret criterion takes into consideration the potential welfare loss as well as the probability

of making a wrong choice.

1.A.3 Sufficient Conditions for Differentiability of ω(·) and ρ(·)

The result below follows from Lemma D.1 in Supplemental Appendix D of Armstrong and

Kolesár (2018) in the case where F = G in their notation. Note that their definition of

the modulus of continuity when F = G is the same as Donoho (1994)’s definition, which is

different from my definition. See Appendix 1.A.5 for the relationship between their definition

and mine.

Lemma 1.A.1. Let Θ be convex. Let θε attain the modulus of continuity at ε > 0 with

‖m(θε)‖ = ε, and suppose that there exists ι ∈ Θ such that L(ι) = 1 and θε + cι ∈ Θ for all

c in a neighborhood of zero. Then, ω(·) is differentiable at ε with ω′(ε) = ε
m(ι)′m(θε)

.

The result below follows from arguments similar to the proof of Lemma D.1 in Armstrong

and Kolesár (2018).

Lemma 1.A.2. Let Θ be convex. Let θε satisfy L(θε) = ρ(ε) and (w∗)′m(θε) = ε, and

suppose that there exists ι ∈ Θ such that L(ι) = 1 and θε+ cι ∈ Θ for all c in a neighborhood

of zero. Then, ρ(·) is differentiable at ε with ρ′(ε) = 1
(w∗)′m(ι) .

Proof. First, I show that ρ(·) is concave on (ε1, ε2), where ε1 = inf{(w∗)′m(θ) : θ ∈ Θ} and

ε2 = sup{(w∗)′m(θ) : θ ∈ Θ}. Pick any ε, ε′ ∈ (ε1, ε2), and let {θε,n}∞n=1 and {θε′,n}∞n=1 be

sequences in Θ such that (w∗)′m(θε,n) = ε and (w∗)′m(θε′,n) = ε′ for all n ≥ 1 and that

limn→∞ L(θε,n) = ρ(ε) and limn→∞ L(θε′,n) = ρ(ε′). Then, for each λ ∈ [0, 1], λθε,n + (1 −

λ)θε′,n ∈ Θ by the convexity of Θ, and (w∗)′m(λθε,n + (1− λ)θε′,n) = λε+ (1− λ)ε′ so that

ρ(λε+ (1− λ)ε′) ≥ L(λθε,n + (1− λ)θε′,n)
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by the definition of ρ. Taking the limit of the right-hand side as n→∞ gives

ρ(λε+ (1− λ)ε′) ≥ λρ(ε) + (1− λ)ρ(ε′).

Therefore, ρ(·) is concave.

Since ρ(·) is concave, the superdifferential of ρ(·) at ε,

∂ρ(ε) = {d : ρ(η) ≤ ρ(ε) + d(η − ε) for all η ∈ R},

is nonempty for all ε ∈ (ε1, ε2).

Now, let θε satisfy L(θε) = ρ(ε) and (w∗)′m(θε) = ε for some ε, and suppose that there

exists ι ∈ Θ such that L(ι) = 1 and θε + cι ∈ Θ for all c in a neighborhood of zero. Then,

for any d ∈ ∂ρ(ε) and for any c in a neighborhood of zero such that θε + cι ∈ Θ,

ρ(ε) + d[(w∗)′m(θε + cι)− ε] ≥ ρ((w∗)′m(θε + cι)) ≥ L(θε + cι) = L(θε) + c = ρ(ε) + c,

where the first inequality follows since d ∈ ∂ρ(ε), and the second inequality follows from the

definition of ρ. Since (w∗)′m(θε + cι) = ε + c(w∗)′m(ι), it follows that cd(w∗)′m(ι) ≥ c

for all c in a neighborhood of zero. This implies that d(w∗)′m(ι) = 1. The result then

follows.

1.A.4 Differentiability of ω(·) and ρ(·) for Example in Section 1.4

I apply Lemma 1.A.1 to show the differentiability of ω(·). Consider the problem (1.4). There

exists a solution to this problem for any ε > 0, since the objective is continuous, and the set

of the vectors of 2n unknowns that satisfy the constraints is closed and bounded. The norm

constraint must hold with equality, for otherwise we can increase the objective by increasing

f(xi, 1) for all i by a small amount. The differentiability of ω(·) then follows from Lemma

1.A.1.

I show the differentiability of ρ(·) at any ε by deriving its closed-form expression. Observe

56



that ρ(ε) is obtained by solving

max
(f(xi,0),f(xi,1))i=1,...,n∈R2n

1

n

n∑
i=1

1{c1 ≤ xi < c0}[f(xi, 1)− f(xi, 0)] (A.1)

s.t.
n∑
i=1

w∗i
f(xi, di)

σ(xi, di)
= ε, f(xi, d)− f(xj , d) ≤ C|xi − xj |, d ∈ {0, 1}, i, j ∈ {1, ..., n},

where w∗i is the ith element of w∗ given in Section 1.4. By the same logic explained in

Section 1.4 for the problem for ω(ε), it is sufficient to check the Lipschitz constraint among

x’s in the sample.

The constraint
∑n

i=1w
∗
i
f(xi,di)
σ(xi,di)

= ε is equivalent to

−
∑

i:c1≤xi<c0

f(xi, 0) + ñf(x+,min, 1) = σ̄ε, (A.2)

where σ̄ = (ñ2σ2
+,min +

∑
i:c1≤xi<c0 σ

2(xi, 0))1/2. The objective of (A.1) and the constraint

(A.2) depend only on ((f(xi, 0), f(xi, 1))i:c1≤xi<0, f(x+,min, 1)), so we can set the other values

arbitrarily as long as the Lipschitz constraint holds. Also, given a value of f(x+,min, 1), the

objective of (A.1) is maximized only when f(xi, 1) = C(x+,min − xi) + f(x+,min, 1) for all i

with c1 ≤ xi < c0 under the Lipschitz constraint. Therefore, the problem (A.1) reduces to

max
((f(xi,0))i:c1≤xi<c0 ,f(x+,min,1))∈Rñ+1

1

n

n∑
i=1

1{c1 ≤ xi < c0}[C(x+,min − xi)

+ f(x+,min, 1)− f(xi, 0)]

s.t.−
∑

i:c1≤xi<c0

f(xi, 0) + ñf(x+,min, 1) = σ̄ε.

By plugging the constraint to the objective, we obtain that the maximized value is

ρ(ε) = C
1

n

n∑
i=1

1{c1 ≤ xi < c0}[x+,min − xi] +
σ̃ε

n
.

Therefore, ρ(·) is differentiable for all ε ∈ R.
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1.A.5 Linear Minimax MSE Estimator and Optimal Bias-Variance

Tradeoff

Donoho (1994) defines the modulus of continuity as ω̃(ε) = sup{|L(θ)−L(θ̃)| : ‖m(θ− θ̃)‖ ≤

ε, θ, θ̃ ∈ Θ}. I first discuss some relationships between this definition and the definition in

this chapter. If Θ is convex and centrosymmetric, the relationship ω̃(ε) = 2ω(ε/2) holds.

Also, if ω̃(·) is differentiable, ω̃′(ε) = ω′(ε/2). Let (−θ̃ε̃, θ̃ε̃) solve the modulus problem

sup{|L(θ) − L(θ̃)| : ‖m(θ − θ̃)‖ ≤ ε̃, θ, θ̃ ∈ Θ}, i.e., ω̃(ε̃) = 2L(θ̃ε̃) and 2‖m(θ̃ε̃)‖ ≤ ε̃. Note

that θ̃ε̃ solves sup{2L(θ) : ‖2m(θ)‖ ≤ ε̃, θ ∈ Θ}, or sup{L(θ) : ‖m(θ)‖ ≤ ε̃/2, θ ∈ Θ}, so

that θ̃ε̃ = θε̃/2, where θε solves sup{L(θ) : ‖m(θ)‖ ≤ ε, θ ∈ Θ} as in the main text.

Linear Minimax MSE Estimators. Let ε̃MSE solve

(ε/2)2

(ε/2)2 + σ2
=
εω̃′(ε)

ω̃(ε)
.

The linear minimax MSE estimator of L(θ) is then given by L̂MSE(Y ) = w′MSEY (Donoho,

1994), where

wMSE =
2ω̃′(ε̃MSE)m(θ̃ε̃MSE)

ε̃MSE
.

Now, let εMSE = ε̃MSE/2, so that

(εMSE)2

(εMSE)2 + σ2
=

2εMSEω̃
′(2εMSE)

ω̃(2εMSE)
,

which is equivalent to

(εMSE)2

(εMSE)2 + σ2
=
εMSEω

′(εMSE)

ω(εMSE)
.

We also have

wMSE =
2ω̃′(2εMSE)m(θ̃2εMSE)

2εMSE
=
ω′(εMSE)m(θεMSE)

εMSE
.
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Optimal Bias-Variance Frontier. The optimal bias-variance frontier in estimation of

L(θ) can be traced out by a class of linear estimators {L̃ε̃(Y )}ε̃>0, where for each ε̃ > 0,

L̃ε̃(Y ) =
2ω̃′(ε̃)m(θ̃ε̃)

′

ε̃
Y .

The maximum bias of L̃ε̃ is

BiasΘ(L̃ε̃(Y )) =
1

2
(ω̃(ε̃)− ε̃ω̃′(ε̃)),

and the variance is (σω̃′(ε̃))2.

For each ε > 0, let L̂ε(Y ) = L̃2ε(Y ). Then,

L̂ε(Y ) =
2ω̃′(2ε)m(θ̃2ε)

′

2ε
Y =

ω′(ε)m(θε)
′

ε
Y .

Therefore, the class of estimators {L̃ε̃(Y )}ε̃>0 is the same as a class of linear estimators

{L̂ε(Y )}ε>0. The maximum bias of L̂ε is

BiasΘ(L̂ε(Y )) =
1

2
(ω̃(2ε)− 2εω̃′(2ε)) = ω(ε)− εω′(ε),

and the variance is (σω′(ε))2.

Example 1.A.1 (Eligibility Cutoff Choice (Cont.)). Consider the setup in Section 1.4.

Let ι ∈ FLip(C) such that ι(x, 0) = 0 for all x and ι(x, 1) = n
ñ . Then, L(ι) = 1, and

f + cι ∈ FLip(C) for all c ∈ R and f ∈ FLip(C). By Lemma 1.A.1 in Appendix 1.A.3, we

obtain

ω′(ε;L, m̃,FLip(C)) =
ε

m̃(ι)′m̃(fε)
=

ε
n
ñ

∑n
i=1 difε(xi, di)/σ

2(xi, di)
, (A.3)

where fε solves the modulus problem in this chapter’s definition. Then,

L̂ε(Y ) =

n∑
i=1

fε(xi, di)/σ
2(xi, di)

n
ñ

∑n
j=1 difε(xj , dj)/σ

2(xj , dj)
Yi.
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The maximum bias of L̂ε is

BiasFLip(C)(L̂ε(Y ))

=
1

n

n∑
i=1

1{c1 ≤ xi < c0}[fε(xi, 1)− fε(xi, 0)]− ε2

n
ñ

∑n
i=1 difε(xi, di)/σ

2(xi, di)
,

and the variance is Var(L̂ε(Y )) = ε2/
(
n
ñ

∑n
i=1 difε(xi, di)/σ

2(xi, di)
)2.

1.A.6 Computing ε∗ for Example in Section 1.4

Here, I provide a procedure for computing ε∗ ∈ arg maxε∈[0,a∗] ω(ε)Φ(−ε) for the example of

eligibility cutoff choice under the Lipschitz class.

The procedure is based on the first-order condition. By differentiating ω(ε)Φ(−ε), we

have

ω′(ε)Φ (−ε)− ω(ε)φ (−ε) =

[
1− Φ (ε)

φ (ε)
− ω(ε)

ω′(ε)

]
ω′(ε)φ (ε) ,

where the equality holds since Φ(x) = 1−Φ(−x) and φ(x) = φ(−x). 1−Φ(ε)
φ(ε) is the Mills ratio

of a standard normal variable, which is strictly decreasing in ε. Since ω(ε) is nondecreasing

and concave, ω(ε)
ω′(ε) is nondecreasing in ε. Therefore, 1−Φ(ε)

φ(ε) −
ω(ε)
ω′(ε) is strictly decreasing in ε.

I suggest using the following procedure to compute ε∗.

1. If 1−Φ(a∗)
φ(a∗) −

ω(a∗)
ω′(a∗) > 0, ε∗ = a∗.

2. If not, use the bisection method to find ε∗ ∈ [0, a∗] that solves 1−Φ(ε)
φ(ε) −

ω(ε)
ω′(ε) = 0.

Note that, for each ε, once we solve the convex optimization problem (1.4) to compute ω(ε)

and (fε(xi, 0), fε(xi, 1)), i = 1, ..., n, we can compute ω′(ε) using the closed-form expression

(A.3) in Appendix 1.A.5.
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1.B Proofs

1.B.1 Auxiliary Lemmas

Lemma 1.B.1. Let g(t) = h(t)Φ
(
b−t
a

)
, where h(t) is nonconstant, nondecreasing, con-

cave, and differentiable on [t, t̄], a > 0, and b ∈ R. If a
1−Φ

(
t−b
a

)
φ
(
t−b
a

) ≤ h(t)
h′(t) , then g(t) is

strictly decreasing on [t, t̄]. If a1−Φ( t̄−ba )
φ( t̄−ba )

≥ h(t̄)
h′(t̄) , then g(t) is strictly increasing on [t, t̄].

If a
1−Φ

(
t−b
a

)
φ
(
t−b
a

) > h(t)
h′(t) and a1−Φ( t̄−ba )

φ( t̄−ba )
< h(t̄)

h′(t̄) , then there exists a unique t∗ ∈ [t, t̄] such that

g(t) is strictly increasing on [t, t∗) and strictly decreasing on (t∗, t̄]. t∗ is the solution to

a
1−Φ( t−ba )
φ( t−ba )

= h(t)
h′(t) if h′(t) is continuous.

Proof. Note first that h′(t) > 0; if h′(t) ≤ 0, then h′(t) = 0 for all t ∈ [t, t̄] since h(t) is

nondecreasing and concave, but this contradicts the assumption that h(t) is nonconstant.

By differentiating g(t), we have for t ∈ [t, t̄],

g′(t) = h′(t)Φ

(
b− t
a

)
− h(t)φ

(
b− t
a

)
/a =

[
a

1− Φ
(
t−b
a

)
φ
(
t−b
a

) − h(t)

h′(t)

]
h′(t)φ

(
t− b
a

)
/a,

where the second equality holds since Φ(x) = 1 − Φ(−x) and φ(x) = φ(−x). By the fact

that the Mills ratio 1−Φ(x)
φ(x) of a standard normal variable is strictly decreasing, a1−Φ( t−ba )

φ( t−ba )

is strictly decreasing in t. In addition, a1−Φ( t−ba )
φ( t−ba )

is continuous. Furthermore, since h(t) is

nondecreasing and concave on [t, t̄], h(t)
h′(t) is nondecreasing on [t, t̄]. Therefore, if a

1−Φ
(
t−b
a

)
φ
(
t−b
a

) ≤
h(t)
h′(t) , then g′(t) < 0 for all t ∈ (t, t̄]. If a1−Φ( t̄−ba )

φ( t̄−ba )
≥ h(t̄)

h′(t̄) , then g′(t) > 0 for all t ∈ [t, t̄).

If a
1−Φ

(
t−b
a

)
φ
(
t−b
a

) > h(t)
h′(t) and a1−Φ( t̄−ba )

φ( t̄−ba )
< h(t̄)

h′(t̄) , then g
′(t) > 0 for t ∈ [t, t∗) and g′(t) < 0 for

t ∈ (t∗, t̄], where t∗ = sup{t ∈ [t, t̄] : g′(t) ≥ 0}. t∗ is the solution to a1−Φ( t−ba )
φ( t−ba )

= h(t)
h′(t) if

h′(t) is continuous. The conclusion then follows.

Lemma 1.B.2. Suppose that the conditions in Theorem 1.2 hold, and let Θε∗ =

arg maxθ∈Θ:‖m(θ)‖≤ε∗ L(θ). Then, ‖m(θ)‖ = ε∗ for any θ ∈ Θε∗, and m(θ) = m(θ̃) for

any θ, θ̃ ∈ Θε∗ .

Proof. First, pick any θ ∈ Θε∗ . Since θ attains the modulus of continuity at ε∗, it also

attains the modulus at ‖m(θ)‖, so that ω(‖m(θ)‖) = ω(ε∗). It follows that ‖m(θ)‖ = ε∗,
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since if ‖m(θ)‖ < ε∗,

ω(‖m(θ)‖)Φ(−‖m(θ)‖/σ) = ω(ε∗)Φ(−‖m(θ)‖/σ) > ω(ε∗)Φ(−ε∗/σ),

which contradicts the assumption that ε∗ maximizes ω(ε)Φ(−ε/σ) over [0, a∗σ].

Now, pick any θ, θ̃ ∈ Θε∗ . By the above argument, ‖m(θ)‖ = ‖m(θ̃)‖ = ε∗, and hence

m(θ),m(θ̃) ∈ {β ∈ Rn : ‖β‖ ≤ ε∗}. Suppose that m(θ) 6= m(θ̃), and let θ̄ = λθ + (1− λ)θ̃

for some λ ∈ (0, 1). Then L(θ̄) = λL(θ)+(1−λ)L(θ̃) = ω(ε∗). By the convexity of Θ, θ̄ ∈ Θ.

Furthermore, since {β ∈ Rn : ‖β‖ ≤ ε∗} is strictly convex, m(θ̄) = λm(θ) + (1− λ)m(θ̃) is

an interior point of {β ∈ Rn : ‖β‖ ≤ ε∗}, which implies that ‖m(θ̄)‖ < ε∗. Thus, θ̄ attains

the modulus at ε∗, but then it must be the case that ‖m(θ̄)‖ = ε∗.

Lemma 1.B.3. Let ψ(a, b) = aΦ(−b). Then, ψ(a, b) is strictly quasi-concave on (0,∞)×R.

Proof. Take any a0, a1 > 0 and b0, b1 ∈ R such that (a0, b0) 6= (a1, b1). I show that ψ(a0 +

λ(a1 − a0), b0 + λ(b1 − b0)) > min{ψ(a0, b0), ψ(a1, b1)} for all λ ∈ (0, 1).

First, suppose that a0 ≤ a1 and b0 ≥ b1. Since either a0 < a1 or b0 > b1 or both must

hold, ψ(a0 + λ(a1 − a0), b0 + λ(b1 − b0)) = (a0 + λ(a1 − a0))Φ(−b0 − λ(b1 − b0)) is strictly

increasing in λ. It then follows that ψ(a0 +λ(a1−a0), b0 +λ(b1− b0)) > ψ(a0, b0). Likewise,

if a0 ≥ a1 and b0 ≤ b1, then ψ(a0 + λ(a1 − a0), b0 + λ(b1 − b0)) > ψ(a1, b1).

Now suppose that a0 < a1 and b0 < b1. Note that the set {(a0, b0) + λ(a1− a0, b1− b0) :

λ ∈ (0, 1)} is equivalent to

{(
0, b0 − a0

b1 − b0
a1 − a0

)
+ t

(
a1 − a0

b1 − b0
, 1

)
: t ∈

(
a0
b1 − b0
a1 − a0

, a1
b1 − b0
a1 − a0

)}
.

We have

ψ

((
0, b0 − a0

b1 − b0
a1 − a0

)
+ t

(
a1 − a0

b1 − b0
, 1

))
= t

(
a1 − a0

b1 − b0

)
Φ

(
−b0 + a0

b1 − b0
a1 − a0

− t
)

=

(
a1 − a0

b1 − b0

)
g (t) ,

where g (t) = tΦ
(
−b0 + a0

b1−b0
a1−a0

− t
)
. Lemma 1.B.1 implies that the minimum of g(t) over
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an interval [t0, t1] is attained only at t0 or t1 or both. Hence, for all t ∈
(
a0

b1−b0
a1−a0

, a1
b1−b0
a1−a0

)
,

g (t) > min

{
g

(
a0
b1 − b0
a1 − a0

)
, g

(
a1
b1 − b0
a1 − a0

)}
.

Thus, for all t ∈
(
a0

b1−b0
a1−a0

, a1
b1−b0
a1−a0

)
,

ψ

((
0, b0 − a0

b1 − b0
a1 − a0

)
+ t

(
a1 − a0

b1 − b0
, 1

))
>

(
a1 − a0

b1 − b0

)
min

{
g

(
a0
b1 − b0
a1 − a0

)
, g

(
a1
b1 − b0
a1 − a0

)}
= min{ψ(a0, b0), ψ(a1, b1)}.

Therefore, ψ(a0 + λ(a1 − a0), b0 + λ(b1 − b0)) > min{ψ(a0, b0), ψ(a1, b1)} for all λ ∈ (0, 1).

The same argument holds for the case where a0 > a1 and b0 > b1.

1.B.2 Proof of Proposition 1.1

The problem (1.4) is equivalent to

max
(f(xi,0),f(xi,1))i=1,...,n∈R2n

1

n

∑
i:c1≤xi<c0

[f(xi, 1)− f(xi, 0)] (B.1)

s.t.
∑

i:xi<c1

f(xi, 0)2

σ2(xi, 0)
+

∑
i:c1≤xi<c0

f(xi, 0)2

σ2(xi, 0)
+
f(x+,min, 1)2

σ2
+,min

+
∑

i:xi>x+,min

f(xi, 1)2

σ2(xi, 1)
≤ ε2,

(B.2)

f(xi, d)− f(xj , d) ≤ C|xi − xj |, d ∈ {0, 1}, i, j ∈ {1, ..., n}. (B.3)

First, consider the case where ε = 0. Since the left-hand side of (B.2) must be zero, any

solution satisfies f(xi, 0) = 0 if xi < c0 and f(xi, 1) = 0 if xi ≥ c0. The objective (B.1) and

constraint (B.2) do not depend on (f(xi, 0))i:xi≥c0 , so we can set these values arbitrarily as

long as the Lipschitz constraint (B.3) holds. I set all of them to 0, so that f(xi, 0) = 0 for
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all i. The above problem then reduces to solving

max
(f(xi,1))i:xi<c0∈Rn

1

n

∑
i:c1≤xi<c0

f(xi, 1) (B.4)

s.t. f(xi, 1)− f(xj , 1) ≤ C|xi − xj |, i, j ∈ {1, ..., n}, (B.5)

where f(xi, 1) = 0 for any i with xi ≥ c0. The Lipschitz constraint (B.5) implies that

f(xi, 1) ≤ C(x+,min − xi) for any i with c1 ≤ xi < c0. Therefore, the value of the objective

(B.4) is at most 1
n

∑
i:c1≤xi<c0 C(x+,min − xi). This value is attained by setting f(xi, 1) =

C(x+,min − xi) for all i with xi < c0, which satisfies the Lipschitz constraint (B.5). In sum,

when ε = 0, one solution to problem (B.1)–(B.3) is given by

f0(xi, 0) = 0, i = 1, ..., n, f0(xi, 1) =


0 if xi > x+,min,

C(x+,min − xi) if xi ≤ x+,min.

Now, let ε̄ = (C/σ̄) minx,x̃∈X ,x 6=x̃ |x − x̃|, where σ̄ = maxi σ(xi, di) and X = {xi : i =

1, ..., n} is the set of points of x in the sample. Consider any ε ∈ (0, ε̄]. I claim that problem

(B.1)–(B.3) reduces to solving

max
((f(xi,0),f(xi,1))i:c1≤xi<c0 ,f(x+,min,1))∈R2ñ+1

1

n

∑
i:c1≤xi<c0

[f(xi, 1)− f(xi, 0)] (B.6)

s.t.
∑

i:c1≤xi<c0

f(xi, 0)2

σ2(xi, 0)
+
f(x+,min, 1)2

σ2
+,min

≤ ε2, (B.7)

f(xi, 1)− f(xj , 1) ≤ C|xi − xj |, i, j ∈ {k : c1 ≤ xk ≤ x+,min}. (B.8)

To see this, suppose that ((fε(xi, 0), fε(xi, 1))i:c1≤xi<c0 , fε(x+,min, 1)) is a solution to the

above problem. First, it must be the case that fε(xi, 1) ≥ 0 for any i with c1 ≤ xi < c0,

since if fε(xi, 1) < 0 for some i with c1 ≤ xi < c0, it is possible to strictly increase the

objective (B.6) without violating the constraints (B.7) and (B.8) by changing fε to f̃ε such

that f̃ε(xi, 1) = max{f(xi, 1), 0} for any i with c1 ≤ xi < c0. By similar arguments, it must

be the case that fε(x+,min, 1) ≥ 0 and fε(xi, 0) ≤ 0 for i with c1 ≤ xi < c0.

64



Next, given ((fε(xi, 0), fε(xi, 1))i:c1≤xi<c0 , fε(x+,min, 1)), set

fε(xi, 0) = 0 if xi < c1 or xi ≥ c0, (B.9)

fε(xi, 1) =


0 if xi > x+,min,

C(x−,min − xi) + fε(x−,min, 1) if xi < c1,

(B.10)

where x−,min = min{xi : c1 ≤ xi < c0} is the smallest values of x among those whose

treatment status would be changed if the cutoff were changed to c1 in the sample. I show

that (fε(xi, 0), fε(xi, 1))i=1,...,n is a solution to the original problem (B.1)–(B.3). Clearly, it

satisfies the constraint (B.2). To see that the Lipschitz constraint (B.3) is satisfied for d = 0,

it suffices to check that |fε(xi, 0) − fε(xj , 0)| ≤ C|xi − xj | for any i, j with xi, xj ≤ x+,min,

given that the Lipschitz constraint for any i, j with xi, xj ≥ x+,min holds by construction.

Observe that for any i, j with xi, xj ≤ x+,min and xi 6= xj ,

|fε(xi, 0)− fε(xj , 0)|2 = fε(xi, 0)2 + fε(xj , 0)2 − 2fε(xi, 0)fε(xj , 0)

≤ fε(xi, 0)2 + fε(xj , 0)2

≤ σ̄2ε̄2

= C2 min
x,x̃∈X ,x 6=x̃

|x− x̃|2

≤ C2|xi − xj |2,

where the inequality in the second line holds since fε(xi, 0) ≤ 0 for all i, the inequality in

the third line follows from the constraint (B.7), and the equality in the fourth line from

the definition of ε̄. For d = 1, it is sufficient to check that |fε(xi, 1) − fε(x+,min, 1)| ≤

C(xi−x+,min) for any i with xi > x+,min and that |fε(xi, 1)−fε(x−,min, 1)| ≤ C(x−,min−xi)

for any i with xi < c1. The latter immediately follows from the construction of fε. Regarding

the former, for any i with xi > x+,min,

|fε(xi, 1)− fε(x+,min, 1)|2 = fε(x+,min, 1)2 ≤ σ̄2ε̄2 ≤ C2|xi − x+,min|2.

Therefore, (fε(xi, 0), fε(xi, 1))i=1,...,n satisfies constraint (B.3). Since the value of the original
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problem (B.1)–(B.3) at (fε(xi, 0), fε(xi, 1))i=1,...,n is equal to the maximized value of the

less constrained problem (B.6)–(B.8), (fε(xi, 0), fε(xi, 1))i=1,...,n is the solution to problem

(B.1)–(B.3).

Now I derive a solution to (B.6)–(B.8). Note that, given a value of f(x+,min, 1), the ob-

jective is maximized only when f(xi, 1) = C(x+,min−xi)+f(x+,min, 1) under the constraints

(B.7) and (B.8). Plugging this into (B.6)–(B.8), one can further simplify the problem to

max
((f(xi,0))i:c1≤xi<c0 ,f(x+,min,1))∈Rñ+1

C

n

∑
i:c1≤xi<c0

(x+,min − xi) +
ñ

n
f(x+,min, 1)

− 1

n

∑
i:c1≤xi<c0

f(xi, 0)

s.t.
∑

i:c1≤xi<c0

f(xi, 0)2

σ2(xi, 0)
+
f(x+,min, 1)2

σ2
+,min

≤ ε2.

This is a convex optimization problem that maximizes a weighted sum of ñ+1 unknowns un-

der the constraint on the upper bound on a weighted Euclidean norm of the unknowns. Sim-

ple calculations show that the solution is given by f(xi, 0) = − σ2(xi,0)ε

(ñ2σ2
+,min+

∑
i:c1≤xi<c0

σ2(xi,0))1/2

for any i with c1 ≤ xi < c0 and f(x+,min, 1) =
ñσ2

+,minε

(ñ2σ2
+,min+

∑
i:c1≤xi<c0

σ2(xi,di))1/2 . From (B.9)

and (B.10), one solution to the original problem (B.1)–(B.3) is then given by

fε(xi, 0) =


0 if xi < c1 or xi ≥ c0,

− σ2(xi,0)ε

(ñ2σ2
+,min+

∑
i:c1≤xi<c0

σ2(xi,0))1/2 if c1 ≤ xi < c0,

fε(xi, 1) =


0 if xi > x+,min,

C(x+,min − xi) +
ñσ2

+,minε

(ñ2σ2
+,min+

∑
i:c1≤xi<c0

σ2(xi,0))1/2 if xi ≤ x+,min.

The modulus of continuity is given by

ω(ε) = C
1

n

n∑
i=1

1{c1 ≤ xi < c0}[x+,min − xi] +
1

n

ñ2σ2
+,min +

∑
i:c1≤xi<c0

σ2(xi, 0)

1/2

ε.
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1.B.3 Proof of Proposition 1.2

I first show that σ 1−Φ(ε/σ)
φ(ε/σ) ≥

ω(ε)
ω′(ε) for all ε ≤ ε∗. From the arguments in the proof of Lemma

1.1, if σ 1−Φ(a∗)
φ(a∗) ≥ ω(a∗σ)

ω′(a∗σ) , then ε∗ = a∗σ, and the above statement holds. Suppose that

σ 1−Φ(a∗)
φ(a∗) < ω(a∗σ)

ω′(a∗σ) . Again from the arguments in the proof of Lemma 1.1, σ 1−Φ(ε/σ)
φ(ε/σ) > ω(ε)

ω′(ε)

for ε < ε∗ and σ 1−Φ(ε/σ)
φ(ε/σ) < ω(ε)

ω′(ε) for ε > ε∗. Since the left-hand side is continuous, and the

curve (ε, ω(ε)
ω′(ε))ε>0 is connected by Lemma 3 of Donoho (1994), σ 1−Φ(ε∗/σ)

φ(ε∗/σ) = ω(ε∗)
ω′(ε∗) . This

implies that σ 1−Φ(ε/σ)
φ(ε/σ) ≥

ω(ε)
ω′(ε) for all ε ≤ ε∗.

Now, note that εMSE solves ε2+σ2

ε = ω(ε)
ω′(ε) . If ε2+σ2

ε > σ 1−Φ(ε/σ)
φ(ε/σ) for all ε > 0, then

ε2+σ2

ε > ω(ε)
ω′(ε) for all ε ≤ ε∗, which implies that ε∗ < εMSE. Below, I show that ε2+σ2

ε >

σ 1−Φ(ε/σ)
φ(ε/σ) for all ε > 0. Let g(ε) = ε2+σ2

ε . We have g′(ε) = 1 − σ2

ε2
, which is strictly

increasing in ε. Therefore, g(ε) is minimized at ε = σ, at which g′(ε) = 0. For any

ε > 0, g(ε) ≥ g(σ) = 2σ > σ 1−Φ(0)
φ(0) > σ 1−Φ(ε/σ)

φ(ε/σ) , where the second inequality holds since
1−Φ(0)
φ(0) ≈ 1.253, and the last holds since 1−Φ(ε/σ)

φ(ε/σ) is strictly decreasing.

1.B.4 Proof of Corollary 1.1

I first show that ω(ε) = L(εθ∗) for any ε ∈ (0, a∗σ]. Since ω(ε) ≤ supθ∈V:‖m(θ)‖≤ε L(θ) by

definition, and εθ∗ ∈ Θ and ‖m(εθ∗)‖ ≤ ε for all ε ∈ (0, a∗σ] by assumption, we have

L(εθ∗) ≤ ω(ε) ≤ sup
θ∈V:‖m(θ)‖≤ε

L(θ), ε ∈ (0, a∗σ].

Therefore, it suffices to show that supθ∈V:‖m(θ)‖≤ε L(θ) ≤ L(εθ∗) for all ε ∈ (0, a∗σ]. Suppose

that supθ∈V:‖m(θ)‖≤ε L(θ) > L(εθ∗) for some ε ∈ (0, a∗σ]. Then, there exists θ ∈ V such that

‖m(θ)‖ ≤ ε and L(θ) > L(εθ∗). It follows that ‖m(θ/ε)‖ ≤ 1 and L(θ/ε) > L(θ∗), which

contradicts the assumption that θ∗ solves supθ∈V:‖m(θ)‖≤1 L(θ).

By the definition of a∗, we have

arg max
0<ε≤a∗σ

ω(ε)Φ(−ε/σ) = arg max
0<ε≤a∗σ

L(θ∗)εΦ(−ε/σ) = {a∗σ}.

It is straightforward to show that Assumptions 1.1 and 1.2 hold. Applying Theorem 1.1 or
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Theorem 1.2, it is shown that the minimax regret decision rule is

δ∗(Y ) = 1
{
m(a∗σθ∗)′Y ≥ 0

}
= 1

{
m(θ∗)′Y ≥ 0

}
,

and the minimax risk is R(σ; Θ) = a∗σL(θ∗)Φ(−a∗).

1.B.5 Proof of Lemma 1.1

Let g(ε) = ω(ε)Φ(−ε/σ). As in the proof of Lemma 1.B.1, differentiating g (from the right)

at ε ≥ 0 gives

g′(ε) =

[
σ

1− Φ
(
ε
σ

)
φ
(
ε
σ

) − ω(ε)

ω′(ε)

]
ω′(ε)φ

( ε
σ

)
/σ.

By the fact that the Mills ratio 1−Φ(x)
φ(x) of a standard normal variable is strictly decreasing,

σ
1−Φ( εσ )
φ( εσ )

is strictly decreasing in ε. In addition, σ 1−Φ( εσ )
φ( εσ )

is continuous. Furthermore, since

ω(ε) is nondecreasing and concave, ω(ε)
ω′(ε) is nondecreasing.

Suppose that σ > 2φ(0) ω(0)
ω′(0) . Then, g′(0) > 0. This implies that g(ε) > g(0) for any

sufficiently small ε > 0. If g′(a∗σ) > 0, g(ε) is strictly increasing on [0, a∗σ], so g is uniquely

maximized at a∗σ over [0, a∗σ]. If g′(a∗σ) ≤ 0, g′(ε) > 0 for ε ∈ [0, ε∗) and g′(ε) < 0 for

ε ∈ (ε∗, a∗σ], where ε∗ = sup{ε ∈ [0, a∗σ] : g′(ε) ≥ 0}. Then g is uniquely maximized at ε∗

over [0, a∗σ].

Suppose that σ ≤ 2φ(0) ω(0)
ω′(0) . Then, g

′(0) ≤ 0. Since σ 1−Φ( εσ )
φ( εσ )

− ω(ε)
ω′(ε) is strictly decreas-

ing, g′(ε) < 0 for any ε > 0. By the mean value theorem, for every ε > 0, g(ε) = g(0)+g′(ε̈)ε

for some ε̈ ∈ (0, ε), which implies g(ε) < g(0). Therefore, g is uniquely maximized at 0 over

[0, a∗σ].

1.B.6 Proof of Lemma 1.2

Here, I prove the following result, which covers Lemma 1.2 as a special case.

Lemma 1.B.4 (Univariate Problems (General)). Suppose that Θ = [−τ1,−τ0] ∪ [τ0, τ1] for

some τ0, τ1 such that τ1 ≥ τ0 ≥ 0 and τ1 > 0, that m(θ) = θ, and that L(θ) = θ. Then, the
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decision rule δ∗(Y ) = 1 {Y ≥ 0} is minimax regret. The minimax risk is given by

Runi(σ; [−τ1,−τ0] ∪ [τ0, τ1]) =


τ1Φ(−τ1/σ) if τ1 < a∗σ,

a∗σΦ(−a∗) if a∗σ ∈ [τ0, τ1],

τ0Φ(−τ0/σ) if a∗σ < τ0.

Following Stoye (2009), I use a statistical game to solve the minimax regret problem.

Consider the following two-person zero-sum game between the decision maker and nature.

The strategy space for the decision maker is D, the set of all decision rules. The strategy

space for nature is ∆(Θ), the set of probability distributions on Θ = [−τ1,−τ0] ∪ [τ0, τ1]. If

the decision maker chooses δ ∈ D and nature chooses π ∈ ∆(Θ), nature’s expected payoff

(and the decision maker’s expected loss) is given by r(δ, π) =
∫
R(δ, θ)dπ(θ), the Bayes

risk of δ with respect to prior π. By Theorem 17 in Chapter 5 of Berger (1985), if (δ∗, π∗)

satisfies

δ∗ ∈ arg min
δ∈D

r(δ, π∗), and R(δ∗, θ) ≤ r(δ∗, π∗) for all θ ∈ Θ,

then δ∗ is a minimax regret rule and π∗ is a least favorable prior. Below I construct (δ∗, π∗)

that satisfies the above conditions.

I first restrict the search space of decision rules to an essentially complete class of deci-

sion rules, following Tetenov (2012).42 Since Y has monotone likelihood ratio and the loss

function satisfies l(1, θ) − l(0, θ) ≥ 0 if θ < 0 and l(1, θ) − l(0, θ) ≤ 0 if θ > 0, it follows

from Theorem 5 in Chapter 8 of Berger (1985) (which is originally from Karlin and Rubin

(1956)) that the class of monotone decision rules

δ(Y ) =


0 if Y < t,

λ if Y = t,

1 if Y > t,

42. A class C of decision rules is essentially complete if, for any decision rule δ /∈ C, there is a decision rule
δ′ ∈ C such that R(δ, θ) ≥ R(δ′, θ) for all θ ∈ Θ.
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where t ∈ R and λ ∈ [0, 1], is essentially complete. Furthermore, since Pθ(Y = t) = 0, a

smaller class of threshold decision rules δ(Y ) = 1 {Y ≥ t}, t ∈ R, is also essentially complete.

Let δt denote the threshold rule with threshold t. Since Y ∼ N (θ, σ2),

R(δt, θ) =


θΦ(σ−1(t− θ)) if θ ≥ 0,

(−θ)(1− Φ(σ−1(t− θ))) if θ < 0.

Let R̄0(t, τ0, τ1) = maxθ∈[−τ1,−τ0]R(δt, θ) = maxθ∈[−τ1,−τ0]−θ(1 − Φ(σ−1(t − θ))) and

R̄1(t, τ0, τ1) = maxθ∈[τ0,τ1]R(δt, θ) = maxθ∈[τ0,τ1] θΦ(σ−1(t − θ)). By symmetry of

R̄0(t, τ0, τ1) and R̄1(t, τ0, τ1), R̄0(0, τ0, τ1) = R̄1(0, τ0, τ1).

Now let θ∗0 ∈ arg maxθ∈[−τ1,−τ0]R(δ0, θ) and θ∗1 ∈ arg maxθ∈[τ0,τ1]R(δ0, θ), where δ0(Y ) =

1{Y ≥ 0}. By symmetry, θ∗0 = −θ∗1. Let π∗ ∈ ∆(Θ) be such that

π∗(θ∗1) =
−θ∗0φ(σ−1(−θ∗0))

−θ∗0φ(σ−1(−θ∗0)) + θ∗1φ(σ−1(−θ∗1))
=

1

2
,

and π∗(θ∗0) = 1 − π∗(θ∗1) = 1
2 . Since R̄0(0, τ0, τ1) = R̄1(0, τ0, τ1) = R(δ0, θ

∗
0) = R(δ0, θ

∗
1),

r(δ0, π
∗) = R(δ0, θ

∗
0) = R(δ0, θ

∗
1) ≥ R(δ0, θ) for all θ ∈ [−τ1,−τ0] ∪ [τ0, τ1].

Since the class of threshold rules is essentially complete, δ0 ∈ arg minδ∈D r(δ, π
∗) if

0 ∈ arg mint∈R r(δt, π
∗). Observe

r(δt, π
∗) = R(δt, θ

∗
0)(1− π∗(θ∗1)) +R(δt, θ

∗
1)π∗(θ∗1)

= −θ∗0(1− Φ(σ−1(t− θ∗0)))(1− π∗(θ∗1)) + θ∗1Φ(σ−1(t− θ∗1))π∗(θ∗1),

and

∂r(δt, π
∗)

∂t
= σ−1θ∗0φ(σ−1(t− θ∗0))(1− π∗(θ∗1)) + σ−1θ∗1φ(σ−1(t− θ∗1))π∗(θ∗1)

= σ−1φ(σ−1(t− θ∗0))

[
θ∗0(1− π∗(θ∗1)) + θ∗1π

∗(θ∗1)
φ(σ−1(t− θ∗1))

φ(σ−1(t− θ∗0))

]
.

Since φ(σ−1(t−θ∗1))
φ(σ−1(t−θ∗0))

is increasing in t by the monotone likelihood ratio property, and θ∗0(1 −

70



π∗(θ∗1)) + θ∗1π
∗(θ∗1)

φ(σ−1(t−θ∗1))
φ(σ−1(t−θ∗0))

is equal to zero at t = 0 by construction of π∗, it follows that

∂r(δt, π
∗)

∂t


> 0 if t > 0,

= 0 if t = 0,

< 0 if t < 0.

Therefore, r(δt, π∗) is minimized at t = 0. Thus, δ0 is minimax regret.

The minimax risk is given by

Runi(σ; [−τ1,−τ0] ∪ [τ0, τ1]) = max
θ∈[τ0,τ1]

θΦ(−θ/σ)

= max
a∈[τ0/σ,τ1/σ]

σaΦ(−a).

By Lemma 1.B.1, aΦ(−a) has a unique maximizer a∗ over [0,∞) and aΦ(−a) is strictly

increasing on [0, a∗) and strictly decreasing on (a∗,∞). Therefore,

Runi(σ; [−τ1,−τ0] ∪ [τ0, τ1]) =


τ1Φ(−τ1/σ) if τ1 < σa∗,

σa∗Φ(−a∗) if σa∗ ∈ [τ0, τ1],

τ0Φ(−τ0/σ) if σa∗ < τ0.

1.B.7 Proof of Lemma 1.3

Here, I prove the following result, which covers Lemma 1.3 as a special case.

Lemma 1.B.5 (Informative One-dimensional Subproblems (General)). Suppose that Θ =

[−θ̄,−tθ̄] ∪ [tθ̄, θ̄], where θ̄ ∈ V, L(θ̄) > 0, m(θ̄) 6= 0, and t ∈ [0, 1]. Then, the decision rule

δ∗(Y ) = 1
{
m(θ̄)′Y ≥ 0

}
is minimax regret. The minimax risk is given by

R(σ; [−θ̄,−tθ̄] ∪ [tθ̄, θ̄]) =
L(θ̄)

‖m(θ̄)‖
Runi(σ; [−‖m(θ̄)‖,−t‖m(θ̄)‖] ∪ [t‖m(θ̄)‖, ‖m(θ̄)‖]).

Fix θ̄ ∈ V, where L(θ̄) > 0 andm(θ̄) 6= 0, and t ∈ [0, 1]. We can write [−θ̄,−tθ̄]∪[tθ̄, θ̄] =
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{λθ̄ : λ ∈ [−1,−t] ∪ [t, 1]}. For λ ∈ [−1,−t] ∪ [t, 1], the regret of decision rule δ under λθ̄

equals

R(δ, λθ̄) = (L(λθ̄))+(1− Eλθ̄[δ(Y )]) + (−L(λθ̄))+Eλθ̄[δ(Y )]

= L(θ̄)
(
λ+(1− Eλθ̄[δ(Y )]) + (−λ)+Eλθ̄[δ(Y )]

)
,

where x+ = max{x, 0}. Minimax regret decision rules thus solve

inf
δ

sup
λ∈[−1,−t]∪[t,1]

(
λ+(1− Eλθ̄[δ(Y )]) + (−λ)+Eλθ̄[δ(Y )]

)
.

Viewing λ as a parameter, I derive a sufficient statistic of Y for λ. For λ ∈ [−1,−t]∪[t, 1],

Y ∼ N (λm(θ̄), σ2In) under λθ̄. It follows that the probability density of Y is

p(y) =
1√

(2π)nσn
exp

(
− 1

2σ2
‖y − λm(θ̄)‖2

)
=

1√
(2π)nσn

exp

(
− 1

2σ2
(‖y‖2 − 2λm(θ̄)′y + λ2‖m(θ̄)‖2)

)
= h(y)g(T (y), λ),

where h(y) = 1√
(2π)nσn

exp(− 1
2σ2 ‖y‖2), g(t, λ) = exp(− 1

2σ2 (−2λt + λ2)‖m(θ̄)‖2), and

T (y) = m(θ̄)′y
‖m(θ̄)‖2 . By the factorization theorem, T (Y ) is a sufficient statistic for λ.

It follows from Theorem 1 in Chapter 1 of Berger (1985) that the class of decision rules

that only depend on T (Y ) is essentially complete. Since T (Y ) ∼ N (λ, σ2

‖m(θ̄)‖2 ) under λθ̄,

minimax regret decision rules that only depend on T (Y ) solve

inf
δ

sup
λ∈[−1,−t]∪[t,1]

(
λ+(1− Eλ[δ(T )]) + (−λ)+Eλ[δ(T )]

)
,

where the expectation is taken with respect to T ∼ N (λ, σ2

‖m(θ̄)‖2 ). This problem is equivalent

to the univariate problem where Θ = [−1,−t]∪ [t, 1], m(θ) = θ, L(θ) = θ, and the variance

of the observed normal variable is σ2

‖m(θ̄)‖2 . Thus, by Lemma 1.B.4, the decision rule

δ∗(Y ) = 1 {T (Y ) ≥ 0} = 1
{
m(θ̄)′Y ≥ 0

}
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is minimax regret. The minimax risk is given by

R(σ; [−θ̄,−tθ̄] ∪ [tθ̄, θ̄]) = L(θ̄)Runi

(
σ

‖m(θ̄)‖
; [−1,−t] ∪ [t, 1]

)
=

L(θ̄)

‖m(θ̄)‖
Runi

(
σ; [−‖m(θ̄)‖ − t‖m(θ̄)‖] ∪ [t‖m(θ̄)‖, ‖m(θ̄)‖]

)
,

where the second equality follows from the fact that Runi (ασ; [−ατ1,−ατ0] ∪ [ατ0, ατ1]) =

αRuni (σ; [−τ1,−τ0] ∪ [τ0, τ1]) for all α > 0.

1.B.8 Proof of Lemma 1.4

Let ε∗ be the unique nonzero solution to max0≤ε≤a∗σ ω(ε)Φ(−ε/σ), and let θε∗ attain the

modulus of continuity at ε∗. By Lemma 1.B.2, ‖m(θε∗)‖ = ε∗. I first introduce some

notation. Pick any η ∈ (0,min{ω(ε∗)Φ(−ε∗/σ), ε∗}) and any ε̄ > ε∗, and define

Γ+,η,ε̄ =

{
(L(θ),m(θ)′)′ ∈ Rn+1 : θ ∈ Θ, L(θ) ≥ η,m(θε∗)

′m(θ)

‖m(θε∗)‖
≥ η, ‖m(θ)‖ ≤ ε̄

}
.

Since ω(ε∗) is finite, ω(ε̄) is also finite by the convexity of ω(ε). Note that Γ+,η,ε̄ is bounded,

since η ≤ α ≤ ω(ε̄) and ‖β‖ ≤ ε̄ for all γ = (α,β′)′ ∈ Γ+,η,ε̄. Let

Θ+,η,ε̄ =

{
θ ∈ Θ : L(θ) ≥ η,m(θε∗)

′m(θ)

‖m(θε∗)‖
≥ η, ‖m(θ)‖ ≤ ε̄

}

and

Θη,ε̄ = {θ ∈ Θ : (θ ∈ Θ+,η,ε̄) or (−θ ∈ Θ+,η,ε̄)}

=

{
θ ∈ Θ :

[(
L(θ) ≥ η,m(θε∗)

′m(θ)

‖m(θε∗)‖
≥ η

)
or
(
L(θ) ≤ −η,m(θε∗)

′m(θ)

‖m(θε∗)‖
≤ −η

)]

and ‖m(θ)‖ ≤ ε̄

}
.

We can then write Γ+,η,ε̄ = {(L(θ),m(θ)′)′ ∈ Rn+1 : θ ∈ Θ+,η,ε̄}.

Now, let Γ̄+,η,ε̄ denote the closure of Γ+,η,ε̄. Define a set-valued function Ψ : Γ̄+,η,ε̄ →
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2Γ̄+,η,ε̄ as follows: for γ = (α,β′)′ ∈ Γ̄+,η,ε̄,

Ψ(γ) = arg max
γ̄=(ᾱ,β̄

′
)′∈Γ̄+,η,ε̄

ᾱΦ

(
− β′β̄

σ‖β‖

)
.

Note that α > 0 and β 6= 0 for all (α,β′)′ ∈ Γ̄+,η,ε̄, since α̃ ≥ η and m(θε∗ )′β̃
‖m(θε∗ )‖ ≥ η for all

γ̃ = (α̃, β̃
′
)′ ∈ Γ+,η,ε̄, and (α,β′)′ is a point or a limit point of Γ+,η,ε̄.

The proof consists of six steps.

Step 1. Ψ has a fixed point, i.e., there exists γ ∈ Γ̄+,η,ε̄ such that γ ∈ Ψ(γ).

Proof. I apply Kakutani’s fixed point theorem. First of all, Γ̄+,η,ε̄ is nonempty, since

(L(θε∗),m(θε∗))
′)′ ∈ Γ̄+,η,ε̄. Furthermore, Γ̄+,η,ε̄ is closed and bounded by construction.

I now show that Γ̄+,η,ε̄ is convex. It suffices to show that Γ+,η,ε̄ is convex, since the

closure of a convex subset of Rn+1 is convex. Pick any γ, γ̃ ∈ Γ+,η,ε̄. Let θ, θ̃ ∈ Θ+,η,ε̄ be

such that (L(θ),m(θ)′)′ = γ and (L(θ̃),m(θ̃)′)′ = γ̃. Fix λ ∈ [0, 1]. By the linearity of L

and m, λγ + (1 − λ)γ̃ = (L(λθ + (1 − λ)θ̃),m(λθ + (1 − λ)θ̃)′)′. Since λθ + (1 − λ)θ̃ ∈ Θ

by the convexity of Θ, L(λθ + (1− λ)θ̃) = λL(θ) + (1− λ)L(θ̃) ≥ η, m(θε∗ )′m(λθ+(1−λ)θ̃)
‖m(θε∗ )‖ =

λm(θε∗ )′m(θ)
‖m(θε∗ )‖ + (1 − λ)m(θε∗ )′m(θ̃)

‖m(θε∗ )‖ ≥ η, and ‖m(λθ + (1 − λ)θ̃)‖ ≤ ‖m(λθ)‖ + ‖m((1 −

λ)θ̃)‖ = λ‖m(θ)‖ + (1 − λ)‖m(θ̃)‖ ≤ ε̄, it follows that λθ + (1 − λ)θ̃ ∈ Θ+,η,ε̄. Therefore,

λγ + (1− λ)γ̃ ∈ Γ+,η,ε̄.

Next, I show that Ψ(γ) is nonempty and convex for all γ ∈ Γ̄+,η,ε̄. Fix γ = (α,β′)′ ∈

Γ̄+,η,ε̄. Let

Sβ =

{(
ᾱ,

β′β̄

σ‖β‖

)
∈ R2 : γ̄ = (ᾱ, β̄

′
)′ ∈ Γ̄+,η,ε̄

}
,

which is a subset of (0,∞)× R. Using Sβ, we can write

Ψ(γ) =

{
(ᾱ, β̄

′
)′ ∈ Γ̄+,η,ε̄ :

(
ᾱ,

β′β̄

σ‖β‖

)
∈ arg max

(a,b)∈Sβ
aΦ(−b)

}
.

Since the mapping γ̄ 7→
(
ᾱ, β

′β̄
σ‖β‖

)
is continuous and Γ̄+,η,ε̄ is compact, Sβ is compact.

Furthermore, since γ̄ 7→
(
ᾱ, β

′β̄
σ‖β‖

)
is linear and Γ̄+,η,ε̄ is convex, Sβ is convex. It then follows

that arg max(a,b)∈Sβ aΦ(−b) is nonempty and singleton, since aΦ(−b) is continuous and is

strictly quasi-concave on (0,∞)×R by Lemma 1.B.3. Let (a∗β, b
∗
β) ∈ arg max(a,b)∈Sβ aΦ(−b).
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We can then write

Ψ(γ) =

{
(ᾱ, β̄

′
)′ ∈ Γ̄+,η,ε̄ : ᾱ = a∗β,

β′β̄

σ‖β‖
= b∗β

}
,

which is nonempty and convex.

Lastly, I show that Ψ has a closed graph. Let f(γ̄,γ) = ᾱΦ
(
− β′β̄
σ‖β‖

)
. Take any sequence

{(γn,γ∗n)}∞n=1 such that γn,γ∗n ∈ Γ̄+,η,ε̄ for all n, (γn,γ
∗
n) → (γ,γ∗), and γ∗n ∈ Ψ(γn) for

all n. Since γn,γ∗n ∈ Γ̄+,η,ε̄ and Γ̄+,η,ε̄ is closed, it follows that γ,γ∗ ∈ Γ̄+,η,ε̄. This implies

that β∗ 6= 0.

I show that γ∗ ∈ Ψ(γ). Suppose this does not hold. Then there exist γ∗∗ ∈ Γ̄+,η,ε̄ and

ε > 0 such that f(γ∗∗,γ) > f(γ∗,γ) + 3ε. Also, since f is continuous on Γ̄+,η,ε̄× Γ̄+,η,ε̄ and

(γn,γ
∗
n) → (γ,γ∗), we have f(γ∗∗,γn) > f(γ∗∗,γ) − ε and f(γ∗,γ) > f(γ∗n,γn) − ε for

any sufficiently large n. Combining the preceding inequalities, we obtain for any sufficiently

large n,

f(γ∗∗,γn) > f(γ∗,γ) + 2ε > f(γ∗n,γn) + ε.

This contradicts the assumption that γ∗n ∈ Ψ(γn) for all n.

Application of Kakutani’s fixed point theorem proves the statement.

Let γ∗ = (α∗, (β∗)′)′ be a fixed point of Ψ. In Steps 2–5, I prove that L(θε∗) = α∗ and

m(θε∗) = β∗.

γ∗ may not be an element of Γ+,η,ε̄, but since it is an element of Γ̄+,η,ε̄, we can

take sequences {γn = (αn,β
′
n)′}∞n=1 and {θn}∞n=1 such that θn ∈ Θ+,η,ε̄ and γn =

(L(θn),m(θn)′)′ ∈ Γ+,η,ε̄ for all n ≥ 1 and that limn→∞ γn = γ∗. Let δ̃(Y ) =

1 {(β∗)′Y ≥ 0}. Below, I suppress the argument σ of the minimax risk R(σ; ·) for nota-

tional brevity.

Step 2. supθ∈Θη,ε̄ R(δ̃, θ) = supθ∈Θ+,η,ε̄
R([−θ, θ] ∩ Θη,ε̄) = limn→∞R([−θn, θn] ∩ Θη,ε̄) =

α∗Φ
(
−‖β

∗‖
σ

)
.
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Proof. Since γ∗ ∈ arg maxγ=(α,β′)′∈Γ̄+,η,ε̄
αΦ
(
− (β∗)′β
σ‖β∗‖

)
,

max
γ=(α,β′)′∈Γ̄+,η,ε̄

αΦ

(
−(β∗)′β

σ‖β∗‖

)
= α∗Φ

(
−(β∗)′(β∗)

σ‖β∗‖

)
= lim

n→∞
αnΦ

(
−(β∗)′βn
σ‖β∗‖

)
= lim

n→∞
L(θn)Φ

(
−(β∗)′m(θn)

σ‖β∗‖

)
= lim

n→∞
R(δ̃, θn),

where the second equality follows by the fact that the mapping γ 7→ αΦ
(
− (β∗)′β
σ‖β∗‖

)
is

continuous. Also, by continuity of the mapping γ 7→ αΦ
(
− (β)′β
σ‖β‖

)
,

α∗Φ

(
−(β∗)′(β∗)

σ‖β∗‖

)
= lim

n→∞
αnΦ

(
− β

′
nβn

σ‖βn‖

)
= lim

n→∞
L(θn)Φ

(
−m(θn)′m(θn)

σ‖m(θn)‖

)
= lim

n→∞
R(δn, θn),

where δn(Y ) = 1 {m(θn)′Y ≥ 0} for all n.

On the other hand, by definition,

sup
γ=(α,β′)′∈Γ̄+,η,ε̄

αΦ

(
−(β∗)′β

σ‖β∗‖

)
≥ sup
γ=(α,β′)′∈Γ+,η,ε̄

αΦ

(
−(β∗)′β

σ‖β∗‖

)
= sup

θ∈Θ+,η,ε̄

L(θ)Φ

(
−(β∗)′m(θ)

σ‖β∗‖

)
= sup

θ∈Θ+,η,ε̄

R(δ̃, θ)

≥ lim
n→∞

R(δ̃, θn).

Therefore,

sup
θ∈Θ+,η,ε̄

R(δ̃, θ) = lim
n→∞

R(δ̃, θn) = lim
n→∞

R(δn, θn) = α∗Φ

(
−(β∗)′(β∗)

σ‖β∗‖

)
.

Note that, supθ∈Θ+,η,ε̄
R(δ̃, θ) = supθ∈Θη,ε̄ R(δ̃, θ) by the symmetry of the regret function
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and the centrosymmetry of Θη,ε̄.

We also have

lim
n→∞

R(δn, θn) ≤ lim
n→∞

sup
θ∈[−θn,θn]∩Θη,ε̄

R(δn, θ)

= lim
n→∞

R([−θn, θn] ∩Θη,ε̄)

≤ sup
θ∈Θ+,η,ε̄

R([−θ, θ] ∩Θη,ε̄),

where the equality in the second line holds since [−θn, θn] ∩Θη,ε̄ = [−θn,−tnθn] ∪ [tnθn, θn]

with tn = max{ η

L(θn) , η
‖m(θε∗ )‖

m(θε∗ )′m(θn)}, and δn is minimax regret for [−θn,−tnθn] ∪ [tnθn, θn]

by Lemma 1.B.5. However, by definition,

sup
θ∈Θη,ε̄

R(δ̃, θ) ≥ R(Θη,ε̄) ≥ sup
θ∈Θ+,η,ε̄

R([−θ, θ] ∩Θη,ε̄).

It follows that

sup
θ∈Θη,ε̄

R(δ̃, θ) = sup
θ∈Θ+,η,ε̄

R([−θ, θ] ∩Θη,ε̄) = lim
n→∞

R([−θn, θn] ∩Θη,ε̄) = α∗Φ

(
−(β∗)′(β∗)

σ‖β∗‖

)
.

Step 3. supθ∈Θ+,η,ε̄
R([−θ, θ] ∩Θη,ε̄) = ω(ε∗)Φ(−ε∗/σ).

Proof. By Lemma 1.B.5,

R([−θε∗ , θε∗ ]) =
L(θε∗)

‖m(θε∗)‖
Runi (σ; [−‖m(θε∗)‖, ‖m(θε∗)‖])

=
ω(ε∗)

ε∗
Runi (σ; [−ε∗, ε∗]) .

On the other hand, with t = max{ η

L(θε∗ ) ,
η

ε∗ },

R([−θε∗ , θε∗ ] ∩Θη,ε̄) = R([−θε∗ ,−tθε∗ ] ∪ [tθε∗ , θε∗ ])

=
L(θε∗)

‖m(θε∗)‖
Runi (σ; [−‖m(θε∗)‖,−t‖m(θε∗)‖] ∪ [t‖m(θε∗)‖, ‖m(θε∗)‖])

=
ω(ε∗)

ε∗
Runi (σ; [−ε∗,−tε∗] ∪ [tε∗, ε∗]) .
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Since ε∗ ≤ a∗σ, Runi (σ; [−ε∗, ε∗]) = Runi (σ; [−ε∗,−tε∗] ∪ [tε∗, ε∗]) by Lemma

1.B.4. Therefore, R([−θε∗ , θε∗ ]) = R([−θε∗ , θε∗ ] ∩ Θη,ε̄). Note that this equals

supθ∈Θ:L(θ)>0,m(θ) 6=0R([−θ, θ]) = ω(ε∗)Φ(−ε∗/σ) as discussed in Step 3 in Section 1.6.1.

Now, since θε∗ ∈ Θ+,η,ε̄,

sup
θ∈Θ+,η,ε̄

R([−θ, θ] ∩Θη,ε̄) ≥ R([−θε∗ , θε∗ ] ∩Θη,ε̄).

However, by definition and the above result,

sup
θ∈Θ+,η,ε̄

R([−θ, θ] ∩Θη,ε̄) ≤ sup
θ∈Θ+,η,ε̄

R([−θ, θ])

≤ sup
θ∈Θ:L(θ)>0,m(θ) 6=0

R([−θ, θ]) = R([−θε∗ , θε∗ ] ∩Θη,ε̄).

Therefore, I obtain

sup
θ∈Θ+,η,ε̄

R([−θ, θ] ∩Θη,ε̄) = sup
θ∈Θ+,η,ε̄

R([−θ, θ]) = ω(ε∗)Φ(−ε∗/σ).

Step 4. α∗ = ω(ε∗) and ‖β∗‖ = ε∗.

Proof. First, with tn = max{ η

L(θn) , η
‖m(θε∗ )‖

m(θε∗ )′m(θn)} and t∗ = limn→∞ tn =

max{ ηα∗ , η
‖m(θε∗ )‖
m(θε∗ )′β∗ },

lim
n→∞

R([−θn, θn] ∩Θη,ε̄)

= lim
n→∞

R([−θn,−tnθn] ∪ [tnθn, θn])

= lim
n→∞

L(θn)

‖m(θn)‖
Runi (σ; [−‖m(θn)‖,−tn‖m(θn)‖] ∪ [tn‖m(θn)‖, ‖m(θn)‖])

=
α∗

‖β∗‖
Runi (σ; [−‖β∗‖,−t∗‖β∗‖] ∪ [t∗‖β∗‖, ‖β∗‖]) ,

where the last equality follows from the fact that the mapping (τ, t) 7→ Runi(σ; [−τ,−tτ ] ∪

[tτ, τ ]) is continuous. By Steps 2–3, ω(ε∗)Φ(−ε∗/σ) = limn→∞R([−θn, θn] ∩ Θη,ε̄). There-

78



fore,

ω(ε∗)Φ(−ε∗/σ) =
α∗

‖β∗‖
Runi (σ; [−‖β∗‖,−t∗‖β∗‖] ∪ [t∗‖β∗‖, ‖β∗‖])

≤ α∗

‖β∗‖
Runi (σ; [−‖β∗‖, ‖β∗‖]) .

Note that αn ≤ ω(‖βn‖) for all n ≥ 1 by the definition of ω(·). Since ω(·) is continuous by

the concavity, taking the limit of both sides yields α∗ ≤ ω(‖β∗‖). It follows that

ω(ε∗)Φ(−ε∗/σ) ≤ ω(‖β∗‖)
‖β∗‖

Runi (σ; [−‖β∗‖, ‖β∗‖]) .

On the other hand, as discussed in Step 3 in Section 1.6.1,

ω(ε∗)Φ(−ε∗/σ) = max
ε>0

ω(ε)

ε
Runi (σ; [−ε, ε]) ≥ ω(‖β∗‖)

‖β∗‖
Runi (σ; [−‖β∗‖, ‖β∗‖]) .

It follows that

max
ε>0

ω(ε)

ε
Runi (σ; [−ε, ε]) =

α∗

‖β∗‖
Runi (σ; [−‖β∗‖,−t∗‖β∗‖] ∪ [t∗‖β∗‖, ‖β∗‖])

=
α∗

‖β∗‖
Runi (σ; [−‖β∗‖, ‖β∗‖])

=
ω(‖β∗‖)
‖β∗‖

Runi (σ; [−‖β∗‖, ‖β∗‖]) .

Therefore, α∗ = ω(‖β∗‖) and ‖β∗‖ ∈ arg maxε>0
ω(ε)
ε Runi (σ; [−ε, ε]). Furthermore,

Runi (σ; [−‖β∗‖,−t∗‖β∗‖] ∪ [t∗‖β∗‖, ‖β∗‖]) = Runi (σ; [−‖β∗‖, ‖β∗‖]) . (B.11)

If it is shown that ‖β∗‖ ≤ a∗σ, then

‖β∗‖ ∈ arg max
0<ε≤a∗σ

ω(ε)

ε
Runi (σ; [−ε, ε]) = arg max

0<ε≤a∗σ
ω(ε)Φ(−ε/σ) = {ε∗}.

Suppose to the contrary that ‖β∗‖ > a∗σ. By inspection of the form of Runi given in Lemma

1.B.4, it is necessary that t∗‖β∗‖ ≤ a∗σ for Eq. (B.11) to hold. Therefore, t∗ ≤ a∗σ
‖β∗‖ < 1

since ‖β∗‖ > a∗σ. It follows that t∗ = max{ ηα∗ , η
‖m(θε∗ )‖
m(θε∗ )′β∗ } < 1, so η < m(θε∗ )′β∗

‖m(θε∗ )‖ . Note also
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that

α∗ > α∗Φ

(
−‖β

∗‖
σ

)
= ω(ε∗)Φ(−ε∗/σ) > η,

where the equality follows from Steps 2–3, and the last inequality by the choice of

η. We can pick t ∈ (0, 1) sufficiently close to 1 so that for all t ∈ [t, 1], η <

m(θε∗ )′tβ∗

‖m(θε∗ )‖ = limn→∞
m(θε∗ )′m(tθn)
‖m(θε∗ )‖ and η < tα∗ = limn→∞ L(tθn). It follows that

tγ∗ = (tα∗, t(β∗)′)′ = limn→∞(L(tθn),m(tθn)′)′ ∈ Γ̄+,η,ε̄ for all t ∈ [t, 1]. Since γ∗ ∈

arg maxγ=(α,β′)′∈Γ̄+,η,ε̄
αΦ
(
− (β∗)′β
σ‖β∗‖

)
, we have

γ∗ ∈ arg max
γ∈[tγ∗,γ∗]

αΦ

(
−(β∗)′β

σ‖β∗‖

)
.

This implies that

1 ∈ arg max
t∈[t,1]

tα∗Φ

(
−(β∗)′tβ∗

σ‖β∗‖

)
= arg max

t∈[t,1]
tΦ

(
− t‖β

∗‖
σ

)
.

By Lemma 1.B.1, t 7→ tΦ
(
− t‖β∗‖

σ

)
is strictly increasing on [0, a

∗σ
‖β∗‖) and strictly decreasing

on ( a∗σ
‖β∗‖ ,∞). Since a∗σ

‖β∗‖ < 1 by the hypothesis, 1 /∈ arg maxt∈[t,1] tΦ
(
− t‖β∗‖

σ

)
, which is a

contradiction.

Step 5. m(θε∗) = β∗.

Proof. Suppose thatm(θε∗) 6= β∗. Pick any λ ∈ (0, 1), and consider the sequence {θλ,n}∞n=1,

where θλ,n = λθε∗ + (1− λ)θn. Since Θ+,η,ε̄ is convex, θλ,n ∈ Θ+,η,ε̄ for all n. We have

lim
n→∞

L(θλ,n) = λL(θε∗) + (1− λ) lim
n→∞

L(θn) = λω(ε∗) + (1− λ)α∗ = ω(ε∗),

and

lim
n→∞

‖m(θλ,n)‖ = ‖λm(θε∗) + (1− λ) lim
n→∞

m(θn)‖ = ‖λm(θε∗) + (1− λ)β∗‖ < ε∗,

where the last inequality holds since {β ∈ Rn : ‖β‖ ≤ ε∗} is strictly convex. These imply

that

ω(ε̃) = sup{L(θ) : θ ∈ Θ, ‖m(θ)‖ ≤ ε̃} = ω(ε∗)
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for any ε̃ ∈ (limn→∞ ‖m(θλ,n)‖, ε∗). It follows that

ω(ε̃)Φ(−ε̃/σ) = ω(ε∗)Φ(−ε̃/σ) > ω(ε∗)Φ(−ε∗/σ),

which contradicts the fact that ε∗ maximizes ω(ε)Φ(−ε/σ) over [0, a∗σ].

Step 6. θε∗ ∈ arg maxθ∈Θ:L(θ)>0 L(θ)Φ
(
−m(θε∗ )′m(θ)

σ‖m(θε∗ )‖

)
.

Proof. Since α∗ = L(θε∗), β∗ = m(θε∗), and γ∗ ∈ arg maxγ=(α,β′)′∈Γ̄+,η,ε̄
αΦ
(
− (β∗)′β
σ‖β∗‖

)
,

γ∗ = (L(θε∗),m(θε∗)
′)′ ∈ arg max

γ=(α,β′)′∈Γ̄+,η,ε̄

αΦ

(
− m(θε∗)

′β

σ‖m(θε∗)‖

)
, (B.12)

which implies

θε∗ ∈ arg max
θ∈Θ+,η,ε̄

L(θ)Φ

(
−m(θε∗)

′m(θ)

σ‖m(θε∗)‖

)
.

Pick any θ ∈ Θ such that L(θ) > 0 and θ /∈ Θ+,η,ε̄. Let γ = (α,β′)′ = (L(θ),m(θ)′)′. Since

η < ω(ε∗) = α∗ and η < ε∗ < ε̄ by the choice of η and ε̄, we can pick t ∈ (0, 1) sufficiently

close to 1 so that

L((1− t)θ + tθε∗) = (1− t)α+ tα∗ > η,

m(θε∗)
′m((1− t)θ + tθε∗)

‖m(θε∗)‖
=
m(θε∗)

′((1− t)β + tβ∗)

‖m(θε∗)‖
= (1− t)m(θε∗)

′β

‖m(θε∗)‖
+ tε∗ > η,

and

‖m((1− t)θ + tθε∗)‖ = ‖(1− t)β + tβ∗‖ ≤ (1− t)‖β‖+ tε∗ < ε̄.

It follows that (1 − t)θ + tθε∗ ∈ Θ+,η,ε̄ and (1 − t)γ + tγ∗ ∈ Γ+,η,ε̄. By Eq. (B.12), this

implies that

α∗Φ

(
−m(θε∗)

′β∗

σ‖m(θε∗)‖

)
≥ [(1− t)α+ tα∗]Φ

(
−(1− t) m(θε∗)

′β

σ‖m(θε∗)‖
− tm(θε∗)

′β∗

σ‖m(θε∗)‖

)
.

Since the function (a, b) 7→ aΦ(−b) is strictly quasi-concave on (0,∞)×R by Lemma 1.B.3,

[(1− t)α+ tα∗]Φ

(
−(1− t) m(θε∗)

′β

σ‖m(θε∗)‖
− tm(θε∗)

′β∗

σ‖m(θε∗)‖

)
> min

{
αΦ

(
− m(θε∗)

′β

σ‖m(θε∗)‖

)
, α∗Φ

(
−m(θε∗)

′β∗

σ‖m(θε∗)‖

)}
.
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Therefore,

α∗Φ

(
−m(θε∗)

′β∗

σ‖m(θε∗)‖

)
> αΦ

(
− m(θε∗)

′β

σ‖m(θε∗)‖

)
,

which implies that

L(θε∗)Φ

(
−m(θε∗)

′m(θε∗)

σ‖m(θε∗)‖

)
> L(θ)Φ

(
−m(θε∗)

′m(θ)

σ‖m(θε∗)‖

)
.

The conclusion then follows.

1.B.9 Proof of Lemma 1.5

Let θε attain the modulus of continuity at ε ∈ [0, ε̄]. Also, let ι ∈ Θ be a parameter value

that satisfies Assumption 1.1(c). Without loss of generality, I normalize ι so that L(ι) = 1.

First, Assumption 1.3(a) holds under Assumption 1.1(a) and (c), since if ‖m(θε)‖ < ε,

then there exists c > 0 such that θε + cι ∈ Θ, L(θε + cι) > L(θε), and ‖m(θε + cι)‖ < ε,

which contradicts the definition of θε.

Under Assumption 1.1(b), θ0 satisfies L(θ0) = ω(0) = ρ(0) as shown in the proof of

Lemma 1.7. Additionally, (w∗)′m(θ0) = 0 by construction. Applying Lemma 1.A.2, we

have that ρ′(0) = 1
(w∗)′m(ι) .

By Lemma 1.A.1, for any sufficiently small ε > 0, ω′(ε) = ε
m(ι)′m(θε)

. Since ω(·) is

differentiable and concave, it is continuously differentiable. Therefore,

ω′(0) = lim
ε→0

ω′(ε) = lim
ε→0

1

m(ι)′m(θε/ε)
=

1

m(ι)′w∗
= ρ′(0),

where the second last equality holds by Assumption 1.1(b) and the fact that ‖m(θε)‖ = ε.

Since ω′(0) is nonnegative by the definition of the modulus andm(ι)′w∗ is finite, ω′(0) and

ρ′(0) must be positive.

Let σ∗ = 2φ(0) ρ(0)
ρ′(0) = 2φ(0) ω(0)

ω′(0) and g(ε) = ρ(ε)Φ
(
− ε
σ∗

)
. By differentiating g(·), we

have

g′(ε) = ρ′(ε)Φ
(
− ε

σ∗

)
− ρ(ε)φ

(
− ε

σ∗

)
/σ∗.
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g′(0) = 0 by the choice of σ∗. Since ρ(·) is concave (as shown in the proof of Lemma 1.A.2)

and differentiable, ρ′(·) is continuous. Let ε1 = inf{(w∗)′m(θ) : θ ∈ Θ}, ε′1 = sup{ε : ρ′(ε) ≥

0}, and ε′2 = sup{ε : ρ(ε) ≥ 0}. Since ρ(·) is concave and hence ρ′(·) is nonincreasing, ρ(·) is

nondecreasing on (ε1, ε
′
1]. Also, since ρ′(0) > 0, we have ε′1 > 0, and ρ(·) is nonconstant on

(ε1, ε
′
1]. By Lemma 1.B.1, g(·) is maximized at 0 over (ε1, ε

′
1]. For ε ∈ (ε′1, ε

′
2], ρ′(ε) ≤ 0 and

ρ(ε) ≥ 0, so that g′(ε) ≤ 0. Therefore, g(·) is maximized at 0 over (ε1, ε
′
2]. Finally, g(ε) ≤ 0

for all ε > ε′2. Since g(0) = ρ(0)/2 = ω(0)/2 ≥ 0, g(·) is maximized at 0 globally.

1.B.10 Proof of Lemma 1.6

Since Y ∼ N (0, σ2In) under θ for all θ ∈ [−θ̄, θ̄], Eθ[δ(Y )] = EY ∼N (0,σ2In)[δ(Y )] is constant

over θ ∈ [−θ̄, θ̄]. Therefore, the maximum regret of decision rule δ is

sup
θ∈[−θ̄,θ̄]

R(δ, θ) =


L(θ̄)(1− EY ∼N (0,σ2In)[δ(Y )]) if EY ∼N (0,σ2In)[δ(Y )] < 1/2,

L(θ̄)/2 if EY ∼N (0,σ2In)[δ(Y )] = 1/2,

(−L(−θ̄))EY ∼N (0,σ2In)[δ(Y )] if EY ∼N (0,σ2In)[δ(Y )] > 1/2.

Thus, any decision rule δ∗ such that EY ∼N (0,σ2In)[δ
∗(Y )] = 1

2 is minimax regret. The

minimax risk is given by

R(σ; [−θ̄, θ̄]) =
L(θ̄)

2
.

1.B.11 Proof of Lemma 1.7

The maximum regret of δ∗ over Θ is

sup
θ∈Θ

R(δ∗, θ) = sup
θ∈Θ

L(θ)Φ

(
−(w∗)′m(θ)

σ∗

)
= sup

ε∈R
sup

θ∈Θ:(w∗)′m(θ)=ε
L(θ)Φ

(
− ε

σ∗

)
= sup

ε∈R
ρ(ε)Φ

(
− ε

σ∗

)
=

1

2
ρ(0),
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where the last equality holds by Assumption 1.3(c).

Since (w∗)′m(θ) = 0 for any θ ∈ Θ such that m(θ) = 0, it follows that ρ(0) ≥ ω(0) by

the definition of ω(·) and ρ(·). If ρ(0) = ω(0), then supθ∈ΘR(δ∗, θ) is attained at θ0, and

supθ∈ΘR(δ∗, θ) = 1
2ω(0). Below, I show that ρ(0) = ω(0). Suppose to the contrary that

ρ(0) > ω(0). Then there exists θ ∈ Θ such that (w∗)′m(θ) = 0,m(θ) 6= 0, and L(θ) > ω(0).

For ε ∈ (0, ε̄], by the Cauchy-Schwarz inequality,

ε−1

∣∣∣∣m(θε)
′

ε
m(θ)

∣∣∣∣ = ε−1

∣∣∣∣( m(θε)

‖m(θε)‖
−w∗

)′
m(θ)

∣∣∣∣ ≤ ε−1

∥∥∥∥ m(θε)

‖m(θε)‖
−w∗

∥∥∥∥ ‖m(θ)‖ ,

where θε attains the modulus of continuity at ε, and the first equality follows from Assump-

tion 1.3(a) and the fact that (w∗)′m(θ) = 0. The right-hand side converges to zero as

ε → 0 by Assumption 1.3(b). Also, ω(·) is concave and hence is continuous. Therefore,

ε−1m(θε)′

ε m(θ) ≤ 1/2 and L(θ) > ω(ε) for any sufficiently small ε > 0. Pick such an ε > 0,

and let θλ = λθε + (1− λ)θ for λ ∈ R. By simple algebra,

‖m(θλ)‖2 = λ2‖m(θε)‖2 + 2λ(1− λ)m(θε)
′m(θ) + (1− λ)2‖m(θ)‖2

≤ λ2ε2 + λ(1− λ)ε2 + (1− λ)2‖m(θ)‖2

= ‖m(θ)‖2λ2 − (2‖m(θ)‖2 − ε2)λ+ ‖m(θ)‖2.

Observe that the right-hand side is quadratic in λ, minimized at λ = 2‖m(θ)‖2−ε2
2‖m(θ)‖2 < 1, and

equal to ε2 when λ = 1. This implies that ‖m(θλ)‖2 < ε2 for any λ close to one. However,

L(θλ) = λL(θε) + (1 − λ)L(θ) > ω(ε) for all λ ∈ (0, 1), which contradicts the assumption

that θε attains the modulus of continuity at ε.

84



1.C Empirical Policy Application: Additional Figures

Figure 1.8: Weight to Each Village Attached by Plug-in Rules

(a) Plug-in MSE Rule, C = 0.5 (b) Plug-in MSE Rule Under Constant Effect,
C = 0.5

(c) Polynomial of Degree 2 (d) Polynomial of Degree 4

Notes: This figure shows the weight wi attached to each village by the plug-in decision rules of the form δ(Y ) =
1{
∑n
i=1 wiYi ≥ 0}. The weights are normalized so that

∑n
i=1 w

2
i = 1. The horizontal axis indicates the relative

score of each village. Each circle corresponds to each village. The size of circles is proportional to the inverse of
the standard error of the enrollment rate Yi. The vertical dashed line corresponds to the new cutoff −0.256. Panels
(a) and (b) show the results for the plug-in rules based on the linear minimax MSE estimators with or without the
assumption of constant conditional treatment effects when the Lipschitz constant C is 0.5. Panels (c) and (d) show
the results for the plug-in rules based on the polynomial regression estimators of degrees 2 and 4, respectively.
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Figure 1.9: Maximum Regret of Minimax Regret Rule and Plug-in Rules Based on Polyno-
mial Regression Estimators

Notes: This figure shows the maximum regret of the minimax regret rule and the plug-in rules based on the polynomial
regression estimators of degrees 1 to 4. The maximum regret is computed by setting the true function class of the
counterfactual outcome function to the Lipschitz class. The maximum regret is normalized so that the unit is the
same as that of the enrollment rate. I report the results for the range [0.05, 0.1, ..., 0.95, 1] of the Lipschitz constant
C.

Figure 1.10: Weight on Bias Placed by Minimax Regret Rule

Notes: This figure shows the weight α ∈ [1/2, 1] on the squared worst-case bias placed by the minimax regret rule of the

form δ∗(Y ) = 1{w̃′Y ≥ 0}, where w̃ ∈ arg minw∈Rn

{
α ·
(

supf∈FLip(C) Ef [w′Y − L(f)]
)2

+ (1− α) ·Var(w′Y )

}
.

I only report the results for the Lipschitz constant C < 0.6 since the minimax regret rule is randomized for C ≥ 0.6.
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Figure 1.11: Optimal Decisions for Alternative New Policies

(a) New Policy of Constructing Schools in 10% of Villages

(b) New Policy of Constructing Schools in 30% of Villages

Notes: This figure shows the probability of choosing the new policy computed by the minimax regret rule. The new
policy is to construct BRIGHT schools in previously ineligible villages whose relative scores are in the top 10% (Panel
(a)) or in the top 30% (Panel (b)). The solid line shows the results for the scenario where we ignore the policy cost.
The dashed line shows the results for the scenario where the policy cost measured in the unit of the enrollment rate
is 0.137. I report the results for the range [0.05, 0.1, ..., 1.45, 1.5] of the Lipschitz constant C in Panel (a) and for the
range [0.05, 0.1, ..., 0.95, 1] in Panel (b).
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Chapter 2

Algorithm is Experiment: Machine

Learning, Market Design, and Policy

Eligibility Rules

Joint with Yusuke Narita

2.1 Introduction

Today’s society increasingly resorts to algorithms for decision making and resource alloca-

tion. For example, judges in the US make legal decisions aided by predictions from supervised

machine learning algorithms. Supervised learning is also used by governments to detect po-

tential criminals and terrorists, and by banks and insurance companies to screen potential

customers. Tech companies like Facebook, Microsoft, and Netflix allocate digital content by

reinforcement learning and bandit algorithms. Retailers and e-commerce platforms engage

in algorithmic pricing. Similar algorithms are encroaching on high-stakes settings, such as

in education, healthcare, and the military.

Other types of algorithms also loom large. School districts, college admissions systems,

and labor markets use matching algorithms for position and seat allocations. Objects worth

astronomical sums of money change hands every day in algorithmically run auctions. Many

public policy domains like Medicaid often use algorithmic rules to decide who is eligible.
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All of the above, diverse examples share a common trait: a decision-making algorithm

makes decisions based only on its observable input variables. Thus conditional on the observ-

able variables, algorithmic treatment decisions are assigned independently of any potential

outcome or unobserved heterogeneity. This property turns algorithm-based treatment deci-

sions into instrumental variables (IVs) that can be used for measuring the causal effect of the

final treatment assignment. The algorithm-based IV may produce stratified randomization,

regression-discontinuity-style local variation, or some combination of the two.

This chapter shows how to use data obtained from algorithmic decision making to iden-

tify and estimate causal effects. In our framework, the analyst observes a random iid sample

{(Yi, Xi, Di, Zi)}ni=1, where Yi is the outcome of interest, Xi ∈ Rp is a vector of pre-treatment

covariates used as the algorithm’s input variables, Di is the binary treatment assignment,

possibly made by humans, and Zi is the binary treatment recommendation made by a

known algorithm. The algorithm takes Xi as input and computes the probability of the

treatment recommendation A(Xi) = Pr(Zi = 1|Xi). Zi is then randomly determined based

on the known probability A(Xi) independently of everything else conditional on Xi. The

algorithm’s recommendation Zi may influence the final treatment assignment Di, deter-

mined as Di = ZiDi(1) + (1 − Zi)Di(0), where Di(z) is the potential treatment assign-

ment that would be realized if Zi = z. Finally, the observed outcome Yi is determined as

Yi = DiYi(1) + (1 − Di)Yi(0), where Yi(1) and Yi(0) are potential outcomes that would

be realized if the individual were treated and not treated, respectively. This setup is an

IV model where the IV satisfies the conditional independence condition but may not sat-

isfy the overlap (full-support) condition. This setup nests the classic propensity-score and

regression-discontinuity-design (RDD) setups.

Within this framework, we first characterize the sources of causal-effect identification

for a class of data-generating algorithms. This class includes all of the aforementioned

examples, nesting both stochastic and deterministic algorithms. The sources of causal-effect

identification turn out to be summarized by a suitable modification of the Propensity Score

(Rosenbaum and Rubin, 1983). We call it the Approximate Propensity Score (APS). For

each covariate value x, the Approximate Propensity Score is the average probability of a
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treatment recommendation in a shrinking neighborhood around x, defined as

pA(x) ≡ lim
δ→0

∫
B(x,δ)A(x∗)dx∗∫

B(x,δ) dx
∗ ,

where B(x, δ) is a p-dimensional ball with radius δ centered at x. The Approximate Propen-

sity Score provides an easy-to-check condition for what causal effects the data from an

algorithm allow us to identify. In particular, we show that the conditional local average

treatment effect (LATE; Imbens and Angrist, 1994) at covariate value x is identified if and

only if the Approximate Propensity Score is nondegenerate, i.e., pA(x) ∈ (0, 1).

The identification analysis suggests a way of estimating treatment effects using the

algorithm-produced data. The treatment effects can be estimated by two-stage least squares

(2SLS) where we regress the outcome on the treatment with the algorithm’s recommenda-

tion as an IV. To make the algorithmic recommendation a conditionally independent IV, we

propose to control for the Approximate Propensity Score. A more precise definition of our

estimator is as follows.1

1. For small bandwidth δ > 0 and a large number of simulation draws S, compute

ps(Xi; δ) =
1

S

S∑
s=1

A(X∗i,s),

where X∗i,1, ..., X
∗
i,S are S independent simulation draws from the uniform distribution

on B(Xi, δ).2 This ps(Xi; δ) is a simulation-based approximation to the Approximate

Propensity Score pA(x).

1. Code implementing this procedure in Python, R, and Stata is available at https://github.com/rfgong/
IVaps

2. To make common δ for all dimensions reasonable, we standardize each characteristic Xij (j = 1, ..., p)
to have mean zero and variance one, where p is the number of input characteristics. To eliminate selection
bias, we suggest selecting a bandwidth value small enough to balance a large set of pre-treatment covariates
between groups with and without treatment recommendations. We also suggest that the analyst considers
several different values and check if the 2SLS estimates are robust to bandwidth changes, as we often do in
RDD applications.
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2. Using the observations with ps(Xi; δ) ∈ (0, 1), run the following 2SLS IV regression:

Di = γ0 + γ1Zi + γ2p
s(Xi; δ) + νi (First Stage)

Yi = β0 + β1Di + β2p
s(Xi; δ) + εi (Second Stage).

Let β̂s1 be the estimated coefficient on Di.

As the main theoretical result, we prove the 2SLS estimator β̂s1 is a consistent and asymp-

totically normal estimator of a well-defined causal effect (weighted average of conditional

local average treatment effects). We also show that inference based on the conventional 2SLS

heteroskedasticity-robust standard errors is asymptotically valid as long as the bandwidth

δ goes to zero at an appropriate rate. There appears to be no existing estimator with these

properties even for the multidimensional RDD, a special case of our framework where the

decision-making algorithm is deterministic and uses multiple input (running) variables for

assigning treatment recommendations. Moreover, our result applies to much more general

settings with stochastic algorithms, deterministic algorithms, and combinations of the two.

We prove the asymptotic properties by exploiting results from differential geometry and

geometric measure theory, which may be of independent interest.

The practical performance of our estimator is demonstrated through simulation and

an original application. We first conduct a Monte Carlo simulation mimicking real-world

decision making based on machine learning algorithms. We consider a data-generating

process combining stochastic and deterministic algorithms. Treatment recommendations are

randomly assigned for a small experimental segment of the population and are determined by

a high-dimensional, deterministic machine learning algorithm for the rest of the population.

Our estimator is shown to be feasible in this high-dimensional setting and have smaller mean

squared errors relative to alternative estimators.

Our empirical application is an analysis of COVID-19 hospital relief funding. The Coro-

navirus Aid, Relief, and Economic Security (CARES) Act and Paycheck Protection Program

designated $175 billion for COVID-19 response efforts and reimbursement to health care en-

tities for expenses or lost revenues (Kakani, Chandra, Mullainathan and Obermeyer, 2020).

This policy intended to help hospitals hit hard by the pandemic, as “financially insecure
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hospitals may be less capable of investing in COVID-19 response efforts” (Khullar, Bond

and Schpero, 2020). We ask whether this problem is alleviated by the relief funding to

hospitals.

We identify the causal effects of the relief funding by exploiting the funding eligibility

rule. The government runs an algorithmic rule on hospital characteristics to decide which

hospitals are eligible for funding. This fact allows us to apply our method to estimate the

effect of relief funding. Specifically, our 2SLS estimators use funding eligibility status as an

IV for funding amounts, while controlling for the Approximate Propensity Score induced by

the eligibility-determining algorithm. The funding eligibility IV boosts the funding amount

by about $14 million on average.

The resulting 2SLS estimates with Approximate-Propensity-Score controls suggest that

COVID-19 relief funding has little to no effect on outcomes, such as the number of COVID-

19 patients hospitalized at each hospital. The estimated causal effects of relief funding are

much smaller and less significant than the naive ordinary least squares (OLS) (with and

without controlling for hospital characteristics) or 2SLS estimates with no controls. The

OLS estimates, for example, imply that a $1 million increase in funding allows hospitals

to accommodate 5.58 more COVID-19 patients. The uncontrolled 2SLS estimates produce

similar, slightly smaller effects (3.25 more patients per $1 million of funding). In contrast,

the 2SLS estimates with Approximate-Propensity-Score controls show no or even negative

effects (from 1.03 to 4.08 less patients for every $1 million of funding).

The null effect of funding also turns out to persist several months after the distribution

of funding. We also find no clear heterogeneity in the null funding effect across different

subgroups of hospitals. Our finding provides causal evidence for the concern that funding

in the CARES Act might not be well targeted to the clinics and hospitals with the greatest

needs.3

3. See, for example, Kakani et al. (2020) as well as Forbes’s article, “Hospital Giant HCA To Re-
turn $6 Billion in CARES Act Money,” at https://www.forbes.com/sites/brucejapsen/2020/10/08/
hospital-giant-hca-to-return-6-billion-in-cares-act-money.
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Related Literature

Theoretically, our framework integrates the classic propensity-score (selection-on-

observables) scenario with a multidimensional extension of the fuzzy RDD. We analyze

this integrated setup in the IV world with noncompliance. This general setting appears to

have no prior established estimator. Armstrong and Kolesár (2021) provide an estimator for

a related setting with perfect compliance.4

Our estimator is applicable to a class of data-generating algorithms that includes stochas-

tic and deterministic algorithms used in practice. Our results thus nest existing insights on

quasi-experimental variation in particular algorithms, such as supervised learning (Cowgill,

2018; Bundorf, Polyakova and Tai-Seale, 2019), surge pricing (Cohen, Hahn, Hall, Levitt

and Metcalfe, 2016), bandit (Li, Chu, Langford and Schapire, 2010), reinforcement learning

(Precup, 2000), and market-design algorithms (Abdulkadiroğlu, Angrist, Narita and Pathak,

2017, 2022; Abdulkadiroğlu, 2013; Kawai, Nakabayashi, Ortner and Chassang, 2022; Narita,

2020, 2021). Our framework also reveals new sources of identification for algorithms that,

at first sight, do not appear to produce a natural experiment.5

When we specialize our estimator to the multidimensional RDD case, our estimator

has three features. First, it is a consistent and asymptotically normal estimator of a well-

interpreted causal effect (average of conditional treatment effects along the RDD boundary)

even if treatment effects are heterogeneous. Second, it uses observations near all the bound-

4. Building on their prior work (Armstrong and Kolesár, 2018), Armstrong and Kolesár (2021) consider
estimation and inference on average treatment effects under the assumption that the final treatment assign-
ment is independent of potential outcomes conditional on observables. Their estimator is not applicable to
the IV world we consider. Their method and our method also achieve different goals; their goal lies in finite-
sample optimality and asymptotically valid inference while our goal is to obtain consistency, asymptotic
normality, and asymptotically valid inference.

5. A focal group of decision-making algorithms are machine learning algorithms, as illustrated in our
machine-learning simulation in Section 2.5. While we are interested in machine learning as a data-production
tool, the existing literature (except the above mentioned strand) focuses on machine learning as a data-
analysis tool. For example, a set of predictive studies applies machine learning to make predictions important
for policy questions (Kleinberg, Lakkaraju, Leskovec, Ludwig and Mullainathan, 2017; Einav, Finkelstein,
Mullainathan and Obermeyer, 2018). Another set of causal and structural work repurposes machine learning
to aid with causal inference and structural econometrics (Athey and Imbens, 2017; Belloni, Chernozhukov,
Fernández-Val and Hansen, 2017; Mullainathan and Spiess, 2017). We supplement these studies by high-
lighting the role of machine learning as a data-production tool. This chapter also has a conceptual connection
to the heated conversation about whether algorithmic decisions are better than human decisions (Hoffman,
Kahn and Li, 2017; Horton, 2017; Kleinberg et al., 2017). In this study, we take a complementary perspective
in that we take a decision algorithm as given, no matter whether it is good or bad, and study how to use its
produced data for impact evaluation.
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ary points as opposed to using only observations near one specific boundary point, thus

avoiding variance explosion even when Xi has many elements. Third, it can be easily imple-

mented even in cases with many covariates and complex algorithms (RDD boundaries). No

prior estimator appears to have all of these properties (Papay, Willett and Murnane, 2011;

Zajonc, 2012; Keele and Titiunik, 2015; Cattaneo, Titiunik, Vazquez-Bare and Keele, 2016;

Imbens and Wager, 2019).

A popular approach to the two-dimensional RDD is to use the shortest (Euclidean) dis-

tance from a point to the boundary as a univariate running variable and apply a univariate

RDD method (Black, 1999; Wong, Steiner and Cook, 2013). However, there appears to be

no established general approaches to computing the shortest distance for arbitrary covariate

spaces and arbitrary decision boundaries. Our method circumvents the difficulty; comput-

ing the Approximate Propensity Score is feasible for any problem, since it only requires

simulating the decision-making algorithm.6

The Approximate Propensity Score developed in this chapter shares its spirit with the

local random assignment interpretation of the RDD, discussed by Cattaneo, Frandsen and

Titiunik (2015), Cattaneo, Titiunik and Vazquez-Bare (2017), Frandsen (2017), Sekhon

and Titiunik (2017), Frölich and Huber (2019), Abdulkadiroğlu et al. (2022) and Eckles,

Ignatiadis, Wager and Wu (2020). These papers consider settings that fit into this chapter’s

framework.

Our empirical application uses the proposed method to study hospitals receiving CARES

Act relief funding. Our empirical finding contributes to emerging work on how health care

providers respond to financial shocks (Duggan, 2000; Adelino, Lewellen and Sundaram,

2015; Dranove, Garthwaite and Ody, 2017; Adelino, Lewellen and McCartney, 2021). Our

empirical setting is a healthcare crisis, so our work complements prior work on more normal

situations. Our analysis also exploits rule-based locally random assignment of cash flows

6. Another common approach to the two-dimensional RDD is to first estimate the conditional average
treatment effect E[Yi(1)− Yi(0)|Xi = x] for a large number of boundary points x (either by the univariate
local polynomial regression using the distance to the point x as a univariate covariate or by the bivariate local
polynomial regression). It then computes a weighted average of the estimated conditional average treatment
effects over the boundary (Zajonc, 2012; Keele and Titiunik, 2015). However, identifying boundary points
from a general decision algorithm itself is hard unless it has a known analytical form. In addition, even if
we can trace out the boundary, it is not straightforward to select a grid of points along the boundary.
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to hospitals. This feature provides our estimates with additional confidence in their causal

interpretation.

2.2 Framework

Our framework is a mix of the conditional independence, multidimensional RDD, and in-

strumental variable scenarios. In the setup in the introduction, we are interested in the effect

of some binary treatment Di ∈ {0, 1} on some outcome of interest Yi ∈ R. As is standard

in the literature, we impose the exclusion restriction that the treatment recommendation

Zi ∈ {0, 1} does not affect the observed outcome other than through the treatment assign-

ment Di. This allows us to define the potential outcomes indexed against the treatment

assignment Di alone.7 Yi(1) and Yi(0) denote potential outcomes when the individual is

treated and not treated, respectively.

We consider algorithms that make treatment recommendations based solely on individ-

ual i’s predetermined, observable covariates Xi = (Xi1, ..., Xip)
′ ∈ Rp. Let the function

A : Rp → [0, 1] represent the decision algorithm, where A(Xi) = Pr(Zi = 1|Xi) is the

probability that the treatment is recommended for individual i with covariates Xi. The

central assumption is that the analyst knows function A and is able to simulate it. That

is, the analyst is able to compute the recommendation probability A(x) given any input

value x ∈ Rp. The treatment recommendation Zi for individual i is then randomly deter-

mined with probability A(Xi) independently of everything else. Consequently, the following

conditional independence property holds.

Property 2.1 (Conditional Independence). Zi⊥⊥(Yi(1), Yi(0), Di(1), Di(0))|Xi.

Note that the codomain of A contains 0 and 1, allowing for deterministic treatment

assignments conditional on Xi. Our framework therefore nests the RDD as a special case.

Another special case of our framework is the classic conditional independence scenario with

the common support condition (A(Xi) ∈ (0, 1) almost surely). In addition to these simple

7. Formally, let Yi(d, z) denote the potential outcome that would be realized if i’s treatment assignment
and recommendation were d and z, respectively. The exclusion restriction assumes that Yi(d, 1) = Yi(d, 0)
for d ∈ {0, 1} (Imbens and Angrist, 1994).
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settings, this framework nests many other situations, such as multidimensional RDDs and

complex machine learning and market-design algorithms, as illustrated in Sections 2.5-2.7.

In typical machine-learning scenarios, an algorithm first applies machine learning on

Xi to make some prediction and then uses the prediction to output the recommendation

probability A(Xi), as in the following example.

Example. Automated disease detection algorithms use machine learning, in particular

deep learning, to detect various diseases and to identify patients at risk (Gulshan et al.,

2016). Using our framework described above, a detection algorithm predicts whether an

individual i has a certain disease (Zi = 1) or not (Zi = 0) based on a digital image Xi ∈ Rp

of a part of the individual’s body, where eachXij ∈ R denotes the intensity value of a pixel in

the image. The algorithm uses training data to construct a binary classifier A : Rp → {0, 1}.

The classifier takes an image of individual i as input and makes a binary prediction of

whether the individual has the disease:

Zi ≡ A(Xi).

The algorithm’s diagnosis Zi may influence the doctor’s treatment decision for the individ-

ual, denoted by Di ∈ {0, 1}. We are interested in how the treatment decision Di affects the

individual’s health outcome Yi.

Let Yzi be defined as Yzi ≡ Di(z)Yi(1) + (1 − Di(z))Yi(0) for z ∈ {0, 1}. Yzi is the

potential outcome when the treatment recommendation is Zi = z. It follows from Property

2.1 that Zi⊥⊥(Y1i, Y0i)|Xi.

We put a few assumptions on the covariates Xi and the algorithm A. To simplify the

exposition, the main text assumes that the distribution of Xi is absolutely continuous with

respect to the Lebesgue measure. Appendix 2.A.2 extends the analysis to the case where

some covariates in Xi are discrete. Let X be the support of Xi, X0 = {x ∈ X : A(x) = 0},

X1 = {x ∈ X : A(x) = 1}, Lp be the Lebesgue measure on Rp, and int(S) denote the interior

of a set S ⊂ Rp.
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Assumption 2.1.

(a) (Almost Everywhere Continuity of A) A is continuous almost everywhere with respect

to the Lebesgue measure.

(b) (Measure Zero Boundaries of X0 and X1) Lp(Xk) = Lp(int(Xk)) for k = 0, 1.

Assumption 2.1 (a) allows the function A to be discontinuous on a set of points with

the Lebesgue measure zero. For example, A is allowed to be a discontinuous step function

as long as it is continuous almost everywhere. Assumption 2.1 (b) holds if the Lebesgue

measures of the boundaries of X0 and X1 are zero. We assume Assumption 2.1 (b) only to

rule out perverse cases such as the case where A(x) = 1 if x ∈ R is a irrational number and

A(x) 6= 1 otherwise.

2.3 Identification

What causal effects can be learned from data (Yi, Xi, Di, Zi) generated by the algorithm

A? A key step toward answering this question is what we call the Approximate Propensity

Score (APS). To define it, we first define the fixed-bandwidth Approximate Propensity Score

as follows:

pA(x; δ) ≡

∫
B(x,δ)A(x∗)dx∗∫

B(x,δ) dx
∗ ,

where B(x, δ) = {x∗ ∈ Rp : ‖x − x∗‖ < δ} is the (open) δ-ball around x ∈ X .8 Here, ‖ · ‖

denotes the Euclidean norm on Rp. To make a common bandwidth δ for all dimensions

reasonable, we normalize Xij to have mean zero and variance one for each j = 1, ..., p.9 We

8. Whether we use an open ball or closed ball does not affect pA(x; δ). We use a ball for simplicity. When we
instead use a rectangle, ellipsoid, or any standard kernel function to define pA(x; δ), the limit limδ→0 p

A(x; δ)
may be different at some points (e.g., at discontinuity points of A), but the same identification results hold
under suitable conditions.

9. This normalization is without loss of generality in the following sense. Take a vector X∗i of any
continuous random variables and A∗ : Rp → [0, 1]. The normalization induces the random vector Xi =
T (X∗i − E[X∗i ]), where T is a diagonal matrix with diagonal entries 1

Var(X∗
i1)1/2

, ..., 1

Var(X∗
ip)1/2

. Let A(x) =

A∗(T−1x + E[X∗i ]). Then (X∗i , A
∗) is equivalent to (Xi, A) in the sense that A(Xi) = A∗(X∗i ) for any

individual i.
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Figure 2.1: Example of the Approximate Propensity Score

assume that A is a Lp-measurable function so that the integrals exist. We then define APS

as follows:

pA(x) ≡ lim
δ→0

pA(x; δ).

APS at x is the average probability of a treatment recommendation in a shrinking ball

around x. We call this the Approximate Propensity Score, since this score modifies the

standard propensity score A(Xi) to incorporate local variation in the score. APS exists for

most covariate points and algorithms (see Appendix 2.A.1).

Figure 2.1 illustrates APS. In the example, Xi is two dimensional, and the support of

Xi is divided into three sets depending on the value of A. For the interior points of each

set, APS is equal to A. On the border of any two sets, APS is the average of the A values

in the two sets. Thus, pA(x) = 1
2(0 + 0.5) = 0.25 for any x in the open line segment AB,

pA(x) = 1
2(0.5+1) = 0.75 for any x in the open line segment BC, and pA(x) = 1

2(0+1) = 0.5

for any x in the open line segment BD.

We say that a causal effect is identified if it is uniquely determined by the joint distribu-

tion of (Yi, Xi, Di, Zi). Our identification analysis uses the following continuity condition.

Assumption 2.2 (Local Mean Continuity). For z ∈ {0, 1}, the conditional expectation
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functions E[Yzi|Xi] and E[Di(z)|Xi] are continuous at any point x ∈ X such that pA(x) ∈

(0, 1) and A(x) ∈ {0, 1}.

Assumption 2.2 is a multivariate extension of the local mean continuity condition fre-

quently assumed in the RDD; in the RDD with a single running variable, the point x for

which pA(x) ∈ (0, 1) and A(x) ∈ {0, 1} is the cutoff point at which the treatment probability

discontinuously changes. A(x) ∈ {0, 1} means that the treatment recommendation Zi is de-

terministic conditional on Xi = x. If APS at the point x is nondegenerate (pA(x) ∈ (0, 1)),

however, there exists a point close to x that has a different value of A from x’s, which creates

variation in the treatment recommendation near x. For any such point x, Assumption 2.2

requires that the points close to x have similar conditional means of the outcome Yzi and

treatment assignment Di(z).10 Note that Assumption 2.2 does not require continuity of the

conditional means at x for which A(x) ∈ (0, 1), since the identification of the conditional

means at such points follows from Property 2.1 without continuity.

Under the above assumptions, APS provides an easy-to-check condition for whether an

algorithm allows us to identify causal effects.

Proposition 2.1 (Identification). Under Assumptions 2.1 and 2.2:

(a) E[Y1i − Y0i|Xi = x] and E[Di(1) −Di(0)|Xi = x] are identified for every x ∈ int(X )

such that pA(x) ∈ (0, 1).11

(b) Let S be any open subset of X such that pA(x) exists for all x ∈ S. Then either

E[Y1i − Y0i|Xi ∈ S] or E[Di(1)−Di(0)|Xi ∈ S] or both are identified only if pA(x) ∈

10. In the context of the RDD with a single running variable, one sufficient condition for continuity
of E[Yzi|Xi] is a local independence condition in the spirit of Hahn, Todd and van der Klaauw (2001):
(Yi(1), Yi(0), Di(1), Di(0)) is independent of Xi near x. A weaker sufficient condition, which allows such
dependence, is that E[Yi(d)|Di(1) = d1, Di(0) = d0, Xi] and Pr(Di(1) = d1, Di(0) = d0|Xi) are continuous
at x for every d ∈ {0, 1} and (d1, d0) ∈ {0, 1}2 (Dong, 2018). This assumes that the conditional means of the
potential outcomes for each of the four types determined based on the potential treatment assignment Di(z)
and the conditional probabilities of those types are continuous at the cutoff. These two sets of conditions
are sufficient for continuity of E[Yzi|Xi] regardless of the dimension of Xi, accommodating multidimensional
RDDs.

11. The causal effects may not be identified at a boundary point x of X for which pA(x) ∈ (0, 1). For
example, if A(x∗) = 1 for all x∗ ∈ B(x, δ) ∩ X and A(x∗) = 0 for all x∗ ∈ B(x, δ) \ X for any sufficiently
small δ > 0, pA(x) ∈ (0, 1) but the causal effects are not identified at x since Pr(Zi = 0|Xi ∈ B(x, δ)) = 0.
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(0, 1) for almost every x ∈ S (with respect to the Lebesgue measure).12

Proof. See Appendix 2.C.1.

Proposition 2.1 characterizes a necessary and sufficient condition for identification. Part

(a) says that the average effects of the treatment recommendation Zi on the outcome Yi and

on the treatment assignment Di for the individuals with Xi = x are both identified if APS

at x is neither 0 nor 1. Non-degeneracy of APS at x implies that there are both types of

individuals who receive Zi = 1 and Zi = 0 among those whose Xi is close to x. Assumption

2.2 ensures that these individuals are similar in terms of average potential outcomes and

treatment assignments. We can therefore identify the average effects conditional on Xi = x.

In Figure 2.1, pA(x) ∈ (0, 1) holds for any x in the shaded region (the union of the minor

circular segment made by the chord AC and the line segment BD).

Part (b) provides a necessary condition for identification. It says that if the average effect

of the treatment recommendation conditional on Xi being in some open set S is identified,

then we must have pA(x) ∈ (0, 1) for almost every x ∈ S. If, to the contrary, there is a

subset of S of nonzero measure for which pA(x) = 1 (or pA(x) = 0), then Zi has no variation

in the subset, which makes it impossible to identify the average effect for the subset.

Proposition 2.1 concerns causal effects of treatment recommendation, not of treatment

assignment. The proposition implies that the conditional average treatment effects and the

conditional local average treatment effects (LATEs) are identified under additional assump-

tions.

Corollary 2.1 (Perfect and Imperfect Compliance). Under Assumptions 2.1 and 2.2:

(a) The average treatment effect conditional on Xi = x, E[Yi(1) − Yi(0)|Xi = x], is

identified for every x ∈ int(X ) such that pA(x) ∈ (0, 1) and Pr(Di(1) > Di(0)|Xi =

x) = 1 (perfect compliance).

(b) The local average treatment effect conditional on Xi = x, E[Yi(1) − Yi(0)|Di(1) 6=

Di(0), Xi = x], is identified for every x ∈ int(X ) such that pA(x) ∈ (0, 1), Pr(Di(1) ≥

12. We assume that pA is a Lp-measurable function so that {x ∈ S : pA(x) = 0} and {x ∈ S : pA(x) = 1}
are Lp-measurable.
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Di(0)|Xi = x) = 1 (monotonicity), and Pr(Di(1) 6= Di(0)|Xi = x) > 0 (existence of

compliers).

Proof. See Appendix 2.C.2.

Non-degeneracy of APS pA(x) therefore summarizes what causal effects the data from

A identify. Note that the key condition (pA(x) ∈ (0, 1)) holds for some points x for ev-

ery standard algorithm except trivial algorithms that always recommend a treatment with

probability 0 or 1. Therefore, the data from every nondegenerate algorithm identify some

causal effect, as formalized in the following proposition.

Proposition 2.2. For simplicity, suppose that X = Rp and that the conditional expectation

functions E[Yzi|Xi] and E[Di(z)|Xi] are continuous for z ∈ {0, 1}.13 If Var(A(Xi)) > 0,

there exists x ∈ X such that E[Y1i−Y0i|Xi = x] and E[Di(1)−Di(0)|Xi = x] are identified.

Proof. See Appendix 2.C.3.

2.4 Estimation

The sources of quasi-random assignment characterized in Proposition 2.1 suggest a way

of estimating causal effects of the treatment. In view of Proposition 2.1, it is possible

to nonparametrically estimate conditional average causal effects E[Y1i − Y0i|Xi = x] and

E[Di(1)−Di(0)|Xi = x] for points x such that pA(x) ∈ (0, 1). This approach is hard to use

in practice, however, when Xi has many elements.

We instead seek an estimator that aggregates conditional effects at different points into

a single average causal effect. Proposition 2.1 suggests that conditioning on APS makes

algorithm-based treatment recommendation quasi-randomly assigned. This motivates the

use of an algorithm’s recommendation as an instrument conditional on APS, which we

operationalize as follows.

13. We assume X = Rp to rule out cases such as the case where X = X0 ∪ X1 and the closures of X0 and
X1 are nonempty and disjoint. In this case, A(Xi) has variation, but no causal effect may be identified.
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2.4.1 Two-Stage Least Squares Meets APS

Suppose that we observe a random sample {(Yi, Xi, Di, Zi)}ni=1 of size n from the population

whose data-generating process is as described in the introduction and Section 2.2. Consider

the following 2SLS regression using the observations with pA(Xi; δn) ∈ (0, 1):

Di = γ0 + γ1Zi + γ2p
A(Xi; δn) + νi (2.1)

Yi = β0 + β1Di + β2p
A(Xi; δn) + εi, (2.2)

where bandwidth δn shrinks toward zero as the sample size n increases. We drop the constant

term if A(Xi) takes only one nondegenerate value in the sample. Let Ii,n = 1{pA(Xi; δn) ∈

(0, 1)}, Di,n = (1, Di, p
A(Xi; δn))′, and Zi,n = (1, Zi, p

A(Xi; δn))′. The 2SLS estimator β̂ is

then given by

β̂ = (
n∑
i=1

Zi,nD
′
i,nIi,n)−1

n∑
i=1

Zi,nYiIi,n.

Let β̂1 denote the 2SLS estimator of β1 in the above regression.14

The above regression uses true fixed-bandwidth APS pA(Xi; δn), but it may be diffi-

cult to analytically compute if A is complex. In such a case, we propose to approximate

pA(Xi; δn) using brute force simulation. We draw a value of x from the uniform distribu-

tion on B(Xi, δn) a number of times, compute A(x) for each draw, and take the average of

A(x) over the draws. Formally, let X∗i,1, ..., X
∗
i,Sn

be Sn independent draws from the uniform

14. For the RDD special case, the 2SLS specification can be interpreted and be made more flexible in the
following way. For the standard RDD with a single running variable Xi ∈ R and cutoff c, pA(Xi; δn) =
Xi−c
2δn

+ 1
2
if Xi ∈ [c − δn, c + δn] and pA(Xi; δn) ∈ {0, 1} otherwise. In this special case, the estimator β̂1

from the 2SLS regression (2.1) and (2.2) is numerically equivalent to a version of the regression discontinuity
(RD) local linear estimator (Hahn et al., 2001) that uses a box kernel and places the same slope coefficient of
Xi on both sides of the cutoff. It is possible to allow for slope changes at the cutoff by viewing pA(Xi; δn) as
a running variable with cutoff 1

2
and applying standard RD local linear estimators (i.e., adding interaction

terms Di(pA(Xi; δn)− 1
2
) and Zi(pA(Xi; δn)− 1

2
) to (2.1) and (2.2), respectively). For the multidimensional

RDD with a linear boundary, pA(Xi; δn) ≥ 1/2 if and only if Zi = 1, and hence we may use pA(Xi; δn) as
a single running variable with cutoff 1

2
. However, if the boundary is nonlinear, Zi is not a deterministic

function of pA(Xi; δn). In this case, it is not straightforward to use pA(Xi; δn) as a single running variable,
since no appropriate cutoff value exists. We leave to future research how to allow for more flexible 2SLS
specifications in the general multidimensional setting.

102



distribution on B(Xi, δn), and calculate

ps(Xi; δn) =
1

Sn

Sn∑
s=1

A(X∗i,s).

We compute ps(Xi; δn) for each i = 1, ..., n independently across i so that

ps(X1; δn), ..., ps(Xn; δn) are independent of each other. For fixed n and Xi, the approx-

imation error relative to true pA(Xi; δn) has a 1/
√
Sn rate of convergence.15 This rate does

not depend on the dimension of Xi, so the simulation error can be made negligible even

when Xi has many elements.

Now consider the following simulation version of the 2SLS regression using the observa-

tions with ps(Xi; δn) ∈ (0, 1):

Di = γ0 + γ1Zi + γ2p
s(Xi; δn) + νi (2.3)

Yi = β0 + β1Di + β2p
s(Xi; δn) + εi. (2.4)

Let β̂s1 denote the 2SLS estimator of β1 in the simulation-based regression. This regression

is the same as the 2SLS regression (2.1) and (2.2) except that it uses the simulated fixed-

bandwidth APS ps(Xi; δn) in place of pA(Xi; δn).16

2.4.2 Consistency and Asymptotic Normality

We establish the consistency and asymptotic normality of the 2SLS estimators β̂1 and β̂s1.

Our consistency and asymptotic normality result uses the following assumptions.

Assumption 2.3.

(a) (Finite Moment) E[Y 4
i ] <∞.

15. More precisely, we have |ps(Xi; δn) − pA(Xi; δn)| = Ops(1/
√
Sn), where Ops indicates the stochastic

boundedness in terms of the probability distribution of the Sn simulation draws.

16. In many industry and policy applications, the analyst is only able to change the algorithm’s recom-
mendation Zi by redesigning the algorithm. In this case, the effect of recommendation Zi on outcome Yi
may also be of interest. We can estimate the effect of recommendation by running the following ordinary
least squares (OLS) regression using the observations with ps(Xi; δ) ∈ (0, 1):

Yi = α0 + α1Zi + α2p
s(Xi; δn) + ui.

The estimated coefficient on Zi, α̂s1, is our preferred estimator of the recommendation effect.
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Let fX denote the probability density function of Xi and let Hk denote the k-

dimensional Hausdorff measure on Rp.17

(b) (Nonzero First Stage)
∫
X p

A(x)(1 − pA(x))E[Di(1) − Di(0)|Xi = x]fX(x)dµ(x) 6= 0,

where µ is the Lebesgue measure Lp when Pr(A(Xi) ∈ (0, 1)) > 0 and is the (p − 1)-

dimensional Hausdorff measure Hp−1 when Pr(A(Xi) ∈ (0, 1)) = 0.

If Pr(A(Xi) ∈ (0, 1)) = 0, then the following conditions (c)–(f) hold.

(c) (Nonzero Variance) Var(A(Xi)) > 0.

For a set S ⊂ Rp, let cl(S) denote the closure of S and let ∂S denote the boundary of

S, i.e., ∂S = cl(S) \ int(S).

(d) (C2 Boundary of Ω∗) There exists a partition {Ω∗1, ...,Ω∗M} of Ω∗ = {x ∈ Rp : A(x) =

1} (the set of the covariate points whose A value is one) such that

(i) dist(Ω∗m,Ω
∗
m′) > 0 for any m,m′ ∈ {1, ...,M} such that m 6= m′. Here

dist(S, T ) = infx∈S,y∈T ‖x− y‖ is the distance between two sets S and T ⊂ Rp;

(ii) Ω∗m is nonempty, bounded, open, connected and twice continuously differentiable

for each m ∈ {1, ...,M}. Here we say that a bounded open set S ⊂ Rp is twice

continuously differentiable if for every x ∈ S, there exists a ball B(x, ε) and a one-

to-one mapping ψ from B(x, ε) onto an open set D ⊂ Rp such that ψ and ψ−1

are twice continuously differentiable, ψ(B(x, ε)∩S) ⊂ {(x1, ..., xp) ∈ Rp : xp > 0}

and ψ(B(x, ε) ∩ ∂S) ⊂ {(x1, ..., xp) ∈ Rp : xp = 0}.

(e) (Regularity of Deterministic A)

(i) Hp−1(∂Ω∗) <∞, and
∫
∂Ω∗ fX(x)dHp−1(x) > 0.

(ii) There exists δ > 0 such that A(x) = 0 for almost every x ∈ N(X , δ) \ Ω∗, where

N(S, δ) = {x ∈ Rp : ‖x− y‖ < δ for some y ∈ S} for a set S ⊂ Rp and δ > 0.

17. The k-dimensional Hausdorff measure on Rp is defined as follows. Let Σ be the Lebesgue σ-algebra
on Rp (the set of all Lebesgue measurable sets on Rp). For S ∈ Σ and δ > 0, let Hkδ (S) = inf{

∑∞
j=1 d(Ej)

k :
S ⊂ ∪∞j=1Ej , d(Ej) < δ,Ej ⊂ Rp for all j}, where d(E) = sup{‖x − y‖ : x, y ∈ E}. The k-dimensional
Hausdorff measure of S on Rp is Hk(S) = limδ→0Hkδ (S).
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(f) (Conditional Moments and Density near ∂Ω∗) There exists δ > 0 such that

(i) E[Y1i|Xi], E[Y0i|Xi], E[Di(1)|Xi], E[Di(0)|Xi] and fX are continuously differ-

entiable and have bounded partial derivatives on N(∂Ω∗, δ);

(ii) E[Y 2
1i|Xi], E[Y 2

0i|Xi], E[Y1iDi(1)|Xi] and E[Y0iDi(0)|Xi] are continuous on

N(∂Ω∗, δ);

(iii) E[Y 4
i |Xi] is bounded on N(∂Ω∗, δ).

Assumption 2.3 is a set of conditions for establishing consistency. Assumption 2.3 (b)

assumes that the weighted average effect of the algorithm’s recommendation on the treat-

ment assignment is nonzero.18 Under this assumption, the estimated first-stage coefficient

on Zi converges to a nonzero quantity.

Assumptions 2.3 (c)–(f) are a set of conditions we require for proving consistency and

asymptotic normality of β̂1 when A is deterministic and produces only multidimensional

regression-discontinuity variation. Assumption 2.3 (c) says that A produces variation in the

treatment recommendation.

Assumption 2.3 (d) imposes the differentiability of the boundary of Ω∗ = {x ∈ Rp :

A(x) = 1}. The conditions are satisfied if, for example, Ω∗ = {x ∈ Rp : f(x) ≥ 0} for some

twice continuously differentiable function f : Rp → R such that ∇f(x) = (∂f(x)
∂x1

, ..., ∂f(x)
∂xp

)′ 6=

0 for all x ∈ Rp with f(x) = 0. Ω∗ takes this form, for example, when the conditional

treatment effect E[Yi(1) − Yi(0)|X] is predicted by supervised learning based on smooth

models such as lasso and ridge regressions, and treatment is recommended to individuals

who are estimated to experience nonnegative treatment effects.

In general, the differentiability of Ω∗ may not hold. For example, if tree-based algorithms

such as Classification And Regression Tree (CART) and random forests are used to predict

the conditional treatment effect, the predicted conditional treatment effect function is not

differentiable at some points. Although the resulting Ω∗ does not exactly satisfy Assumption

18. The average is taken over the covariate values for which pA(x) is nondegenerate (i.e., pA(x)(1−pA(x)) ∈
(0, 1)). There is a positive mass of such covariates values when A is stochastic (Pr(A(Xi) ∈ (0, 1)) > 0).
When A is deterministic (Pr(A(Xi) ∈ (0, 1)) = 0), APS is nondegenerate only for boundary points at which
the treatment recommendation changes from one to the other. Typically, the Lebesgue measure of the
boundary is zero, and hence we compute the integral with respect to the (p − 1)-dimensional Hausdorff
measure instead.
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2.3 (d), the assumptions approximately hold in that Ω∗ is arbitrarily well approximated by

a set that satisfies the differentiability condition.19

Part (i) of Assumption 2.3 (e) says that the boundary of Ω∗ is (p− 1) dimensional and

that the boundary has nonzero density.20 Part (ii) puts a weak restriction on the values A

takes on outside the support of Xi. It requires that A(x) = 0 for almost every x /∈ Ω∗ that

is outside X but is in the neighborhood of X . A(x) may take on any value if x is not close

to X . These conditions hold in practice. Assumption 2.3 (f) imposes continuity, continuous

differentiability and boundedness on the conditional moments of potential outcomes and

the probability density near the boundary of Ω∗. Note that Part (i) of Assumption 2.3 (f)

implies Assumption 2.2.

When A is stochastic, asymptotic normality requires additional assumptions. Let

C∗ = {x ∈ Rp : A is continuously differentiable at x},

and let D∗ = Rp \ C∗ be the set of points at which A is not continuously differentiable.

Assumption 2.4. If Pr(A(Xi) ∈ (0, 1)) > 0, then the following conditions (a)–(c) hold.

(a) (Probability of Neighborhood of D∗) Pr(Xi ∈ N(D∗, δ)) = O(δ).

(b) (Bounded Partial Derivatives of A) The partial derivatives of A are bounded on C∗.

(c) (Bounded Conditional Mean) E[Yi|Xi] is bounded on X .

Assumption 2.4 is required for proving asymptotic normality of β̂1 when A is stochas-

tic. To explain the role of Assumption 2.4 (a), consider a path of covariate points

xδ ∈ N(D∗, δ) ∩ C∗ indexed by δ > 0. Since A is continuous at xδ, pA(xδ) = A(xδ)

(as formally implied by Proposition 2.A.2 in Appendix 2.A.1). However, pA(xδ; δ) does not

19. For example, suppose that p = 2, A(x) = 1 if x1 > 0 and x2 > 0, and A(x) = 0 otherwise. In this case,
Ω∗ = {x ∈ R2 : x1 > 0, x2 > 0}. Let {Ωk}∞k=1 be a sequence of subsets of R2, where Ωk = {x ∈ R2 : x2 ≥

1
kx1

, x1 > 0} for each k. Ωk is twice continuously differentiable for all k and well approximates Ω∗ for a large
k in that dH(Ω∗,Ωk)→ 0 as k →∞, where dH(S, T ) = max{supx∈S infy∈T ‖x− y‖, supy∈T infx∈S ‖x− y‖}
is the Hausdorff distance between two sets S and T ⊂ Rp.

20. The boundary of Ω∗ may fail to be (p − 1) dimensional in trivial cases where the Lebesgue measure
of Ω∗ is zero and hence A(Xi) = 0 with probability one. For example, when the covariate space is three
dimensional (p = 3) and Ω∗ is a straight line, not a set with nonzero volume nor even a plane, the boundary
of Ω∗ is the same as Ω∗, and its two-dimensional Hausdorff measure is zero.
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necessarily get sufficiently close to A(xδ) even as δ → 0, since xδ is in the δ-neighborhood

of D∗ and hence A may discontinuously change within the δ-ball B(xδ, δ). Assumption 2.4

(a) requires that the probability of Xi being in the δ-neighborhood of D∗ shrink to zero at

the rate of δ, which makes the points in the neighborhood negligible.

Assumption 2.4 (a) often holds in practice. If A is continuously differentiable on X , then

D∗ ∩X = ∅, so this condition holds. If, for example, the treatment recommendation is ran-

domly assigned based on a stratified randomized experiment or on the ε-Greedy algorithm,

D∗ is the boundary at which the recommendation probability changes discontinuously. For

any boundary of standard shape, the probability of Xi being in the δ-neighborhood of the

boundary vanishes at the rate of δ, and the required condition is satisfied. We provide a

sufficient condition for this condition in Appendix 2.A.3. Assumption 2.4 (b) and (c) are

regularity conditions, imposing the boundedness of the partial derivatives of A and of the

conditional mean of the outcome.

The following assumption is the key to proving asymptotic normality of the simulation-

based estimator β̂s1.

Assumption 2.5 (The Number of Simulation Draws). n−1/2Sn →∞, and Pr(pA(Xi; δn) ∈

(0, γ logn
Sn

) ∪ (1− γ logn
Sn

, 1)) = o(n−1/2δ
1/2
n ) for some γ > 1

2 .

Assumption 2.5 imposes the condition on the growth rate of the number of simula-

tion draws Sn. This assumption ensures that the bias caused by using ps(Xi; δn) in-

stead of pA(Xi; δn) is asymptotically negligible. To understand this condition, note that

ps(Xi; δn) enters the 2SLS first-order condition,
∑n

i=1(1, Zi, p
s(Xi; δn))′(Yi − β0 − β1Di −

β2p
s(Xi; δn))1{ps(Xi; δn) ∈ (0, 1)} = 0, in two ways. First, ps(Xi; δn) enters the condition

in a nonlinear but smooth way through the ps(Xi; δn)2 term. The asymptotic bias due to

simulation errors is O(
√
n/Sn). The bias diminishes under the first part of Assumption 2.5.

Second, ps(Xi; δn) also enters the first-order condition in a nonsmooth way, since we only

use observations for which ps(Xi; δn) ∈ (0, 1). If pA(Xi; δn) is nondegenerate but close to

zero or one, ps(Xi; δn) may be degenerate (i.e., A(X∗i,s) = 0 for all s or A(X∗i,s) = 1 for all

s) with a large probability. The second part of Assumption 2.5 ensures that the fraction of

such observations goes to zero sufficiently fast, which eliminates the asymptotic bias caused
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by not using observations with pA(X;δn) ∈ (0, 1).21

To illustrate how the second part of this assumption restricts the rate at which Sn goes

to infinity, consider an example where Pr(pA(Xi; δn) ∈ (0, 1)) = O(δn), and pA(Xi; δn) is

approximately uniformly distributed on the tails (0, γ logn
Sn

) ∪ (1 − γ logn
Sn

, 1). In this case,

Pr(pA(Xi; δn) ∈ (0, γ logn
Sn

)∪ (1−γ logn
Sn

, 1)) = O(δn
logn
Sn

), and the second part of Assumption

2.5 requires that Sn grow sufficiently fast so that n1/2δ
1/2
n logn
Sn

= o(1). One choice of (δn, Sn)

that satisfies both parts of Assumption 2.5 is δn = α1n
−κ1 and Sn = α2n

κ2 for some

α1, α2 > 0, κ1 ∈ (1
2 , 1) and κ2 >

1
2 .

Under the above conditions, the 2SLS estimators β̂1 and β̂s1 are consistent and asymp-

totically normal estimators of a weighted average treatment effect.

Theorem 2.1 (Consistency and Asymptotic Normality). Suppose that Assumptions 2.1 and

2.3 hold and δn → 0, nδn →∞ and Sn →∞ as n→∞. Then the 2SLS estimators β̂1 and

β̂s1 converge in probability to

β1 ≡ lim
δ→0

E[ωi(δ)(Yi(1)− Yi(0))],

where

ωi(δ) =
pA(Xi; δ)(1− pA(Xi; δ))(Di(1)−Di(0))

E[pA(Xi; δ)(1− pA(Xi; δ))(Di(1)−Di(0))]
.

Suppose, in addition, that Assumptions 2.4 and 2.5 hold and nδ2
n → 0 as n→∞. Then

σ̂−1
n (β̂1 − β1)

d−→ N (0, 1),

(σ̂sn)−1(β̂s1 − β1)
d−→ N (0, 1),

where we define σ̂−1
n and (σ̂sn)−1 as follows. Let

Σ̂n = (

n∑
i=1

Zi,nD
′
i,nIi,n)−1(

n∑
i=1

ε̂2i,nZi,nZ
′
i,nIi,n)(

n∑
i=1

Di,nZ
′
i,nIi,n)−1,

21. We also use Assumption 2.4 (c) to eliminate the asymptotic bias. By Assumption 2.4 (c), the condi-
tional mean E[Yi|pA(Xi; δn) ∈ (0, γ logn

Sn
) ∪ (1− γ logn

Sn
, 1)] is bounded by the same constant for all n, which

implies that E[Yi1{pA(Xi; δn) ∈ (0, γ logn
Sn

) ∪ (1− γ logn
Sn

, 1)}] = o(n−1/2δ
1/2
n ) under Assumption 2.5.
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where

ε̂i,n = Yi −D′i,nβ̂.

Σ̂n is the conventional heteroskedasticity-robust estimator for the variance of the 2SLS esti-

mator. σ̂2
n is the second diagonal element of Σ̂n. (σ̂sn)2 is the analogously-defined estimator

for the variance of β̂s1 from the simulation-based regression.

Proof. See Appendix 2.C.4.

Theorem 2.1 says that the 2SLS estimators converge to the limit of a weighted av-

erage of causal effects for the subpopulation whose fixed-bandwidth APS is nondegener-

ate (pA(Xi; δ) ∈ (0, 1)) and who would switch their treatment status in response to the

treatment recommendation (Di(1) 6= Di(0)).22 The limit limδ→0E[ωi(δ)(Yi(1)− Yi(0))] al-

ways exists under the assumptions of Theorem 2.1. Theorem 2.1 also shows that inference

based on the conventional 2SLS heteroskedasticity-robust standard errors is asymptotically

valid if δn goes to zero at an appropriate rate. The convergence rate of β̂1 is Op(1/
√
n) if

Pr(A(Xi) ∈ (0, 1)) > 0 and is Op(1/
√
nδn) if Pr(A(Xi) ∈ (0, 1)) = 0.

Our consistency result requires that δn go to zero slower than n−1. The rate condition

ensures that, when Pr(A(Xi) ∈ (0, 1)) = 0, we have sufficiently many observations in the

δn-neighborhood of the boundary of Ω∗. Importantly, the rate condition does not depend

on the dimension of Xi, unlike other bandwidth-based estimation methods such as kernel

methods. This is because we use all the observations in the δn-neighborhood of the boundary,

and the number of those observations is of order nδn regardless of the dimension of Xi if

the dimension of the boundary is one less than the dimension of Xi, i.e., (p− 1).

The asymptotic normality result requires that δn go to zero sufficiently quickly so that

nδ2
n → 0. When Pr(A(Xi) ∈ (0, 1)) > 0, we need to use a small enough δn so that pA(Xi; δn)

converges to pA(Xi) fast enough and δn-neighborhood of D∗ is asymptotically small enough.

When Pr(A(Xi) ∈ (0, 1)) = 0, the asymptotic normality is based on undersmoothing, which

22. It is possible to estimate other weighted averages and the unweighted average by reweighting different
observations appropriately. For example, we can estimate the unweighted average treatment effect by weight-
ing observations by the inverse of fixed-bandwidth APS. Under monotonicity (Pr(Di(1) ≥ Di(0)|Xi) = 1),
we could also apply Abadie (2003)âĂŹs Kappa weighting method using fixed-bandwidth APS instead of the
standard propensity score to estimate other weighted averages of treatment effects for compliers.
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eliminates the asymptotic bias by using the observations sufficiently close to the boundary

of Ω∗. In both cases, the bias of our estimator is O(δn). The standard deviation is O(1/
√
n)

when Pr(A(Xi) ∈ (0, 1)) > 0 and is O(1/
√
nδn) when Pr(A(Xi) ∈ (0, 1)) = 0. The condition

that nδ2
n → 0 ensures that the bias converges to zero faster than the standard deviation in

either case.23

Whether or not Pr(A(Xi) ∈ (0, 1)) = 0, when we use simulated fixed-bandwidth APS,

the consistency result requires that the number of simulation draws Sn go to infinity as n

increases. The asymptotic normality result requires a sufficiently fast growth rate of Sn

given by Assumption 2.5 to make the bias caused by using ps(Xi; δn) negligible.

Finally, note that the weight ωi(δ) given in Theorem 2.1 is negative if Di(1) < Di(0), so

E[ωi(δ)(Yi(1)−Yi(0))] may not be a causally interpretable convex combination of treatment

effects Yi(1)−Yi(0). This can happen because the treatment effect of those whose treatment

assignment switches from 1 to 0 in response to the treatment recommendation (i.e., defiers)

negatively contributes to E[ωi(δ)(Yi(1)−Yi(0))]. Additional assumptions prevent this prob-

lem. If the treatment effect is constant, for example, the 2SLS estimators are consistent for

the treatment effect.

Corollary 2.2. Suppose that Assumptions 2.1 and 2.3 hold, that the treatment effect is

constant, i.e., Yi(1) − Yi(0) = b for some constant b, and that δn → 0, nδn → ∞, and

Sn →∞ as n→∞. Then the 2SLS estimators β̂1 and β̂s1 converge in probability to b.

Another approach is to impose monotonicity (Imbens and Angrist, 1994). Let

LATE(x) = E[Yi(1) − Yi(0)|Di(1) 6= Di(0), Xi = x] be the local average treatment ef-

fect (LATE) conditional on Xi = x.

Corollary 2.3. Suppose that Assumptions 2.1 and 2.3 hold, that Pr(Di(1) ≥ Di(0)|Xi =

x) = 1 for any x ∈ X with pA(x) ∈ (0, 1) (monotonicity), and that δn → 0, nδn → ∞ and

Sn →∞ as n→∞. Then the 2SLS estimators β̂1 and β̂s1 converge in probability to

lim
δ→0

E[ω(Xi; δ)LATE(Xi)],

23. In the special case of the univariate RDD, standard RD local linear estimators are shown to have the
same convergence rate under our assumptions (the smoothness of regression functions, in particular).
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where

ω(x; δ) =
pA(x; δ)(1− pA(x; δ))E[Di(1)−Di(0)|Xi = x]

E[pA(Xi; δ)(1− pA(Xi; δ))(Di(1)−Di(0))]
.

The 2SLS estimators are consistent for the limit of a weighted average of conditional

LATEs over all values of Xi with nondegenerate fixed-bandwidth APS pA(Xi; δn). The

weights are proportional to pA(Xi; δn)(1 − pA(Xi; δn)) and to the proportion of compliers,

E[Di(1)−Di(0)|Xi].

2.4.3 Intuition and Challenges

Theorem 2.1 holds whether A is stochastic (Pr(A(Xi) ∈ (0, 1)) > 0) or deterministic

(Pr(A(Xi) ∈ (0, 1)) = 0). If we consider these two underlying cases separately, the proba-

bility limit of the 2SLS estimators has a more specific expression, as shown in the proof of

Theorem 2.1 in Appendix 2.C.4. If Pr(A(Xi) ∈ (0, 1)) > 0,

plim β̂1 = plim β̂s1 =
E[A(Xi)(1−A(Xi))(Di(1)−Di(0))(Yi(1)− Yi(0))]

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]
. (2.5)

The 2SLS estimators converge to a weighted average of treatment effects for the subpopu-

lation with nondegenerate A(Xi).

To relate this result to existing work, consider the following 2SLS regression with the

(standard) propensity score A(Xi) control:

Di = γ0 + γ1Zi + γ2A(Xi) + νi (2.6)

Yi = β0 + β1Di + β2A(Xi) + εi. (2.7)

Under conditional independence, the 2SLS estimator from this regression converges in prob-

ability to the treatment-variance weighted average of treatment effects in (2.5) (Angrist and

Pischke, 2008; Hull, 2018). Not surprisingly, for this selection-on-observables case, our result

shows that the 2SLS estimator is consistent for the same treatment effect whether we control

for the propensity score, fixed-bandwidth APS, or simulated fixed-bandwidth APS.

Importantly, using fixed-bandwidth APS as a control allows us to consistently esti-

mate a causal effect even if A is deterministic and produces multidimensional regression-
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discontinuity variation. If Pr(A(Xi) ∈ (0, 1)) = 0,

plim β̂1 = plim β̂s1 =

∫
∂Ω∗ E[(Di(1)−Di(0))(Yi(1)− Yi(0))|Xi = x]fX(x)dHp−1(x)∫

∂Ω∗ E[Di(1)−Di(0)|Xi = x]fX(x)dHp−1(x)
. (2.8)

The 2SLS estimators converge to a weighted average of treatment effects for the subpopu-

lation who are on the boundary of the treated region.24

Proving this result requires a technique that may be useful for other problems. Recall

that the 2SLS regression uses the observations with pA(Xi; δn) ∈ (0, 1) (or ps(Xi; δn) ∈

(0, 1) when we use simulated fixed-bandwidth APS) only. By definition, if pA(Xi; δ) ∈

(0, 1), Xi must be in the δ-neighborhood of the boundary of Ω∗. Therefore, to derive

the probability limit of β̂1, it is necessary to derive the limits of the integrals of relevant

variables over the δ-neighborhood (e.g.,
∫
N(∂Ω∗,δ)E[Yi|Xi = x]fX(x)dx) as δ shrinks to zero.

We take an approach drawing on change of variables techniques from differential geometry

and geometric measure theory.25 In this approach, we first use the coarea formula (Lemma

2.B.3 in Appendix 2.B.3) to write the integral of an integrable function g over N(∂Ω∗, δ) in

terms of the iterated integral over the levels sets of the signed distance function of Ω∗:

∫
N(∂Ω∗,δ)

g(x)dx =

∫ δ

−δ

∫
{x′∈Rp:ds

Ω∗ (x′)=λ}
g(x)dHp−1(x)dλ, (2.9)

where dsΩ∗ is the signed distance function of Ω∗ (see Appendix 2.B.2 for the definition). The

set {x′ ∈ Rp : dsΩ∗(x
′) = λ} is a level set of dsΩ∗ , which collects the points in Ω∗ when λ > 0

and the points in Rp \ Ω∗ when λ < 0 whose distance to the boundary ∂Ω∗ is |λ|. Figure

2.2a shows a visual illustration of the level set.

We then use the area formula (Lemma 2.B.4 in Appendix 2.B.3) to write the integral

24. The numerator and denominator are invariant to the scaling and shifting of covariates (i.e., multiplying
by a constant vector element wise and adding a constant vector), since they are density-weighted averages.

25. Our approach using geometric theory shows that β̂1 converges to an integral of the conditional treat-
ment effect over boundary points with respect to the Hausdorff measure. In contrast, prior studies on
multidimensional RDDs express treatment effect estimands in terms of expectations conditional on Xi being
in the boundary like E[Y1i − Y0i|Xi ∈ ∂Ω∗] (Zajonc, 2012). However, those conditional expectations are,
formally, not well-defined, since Lp(∂Ω∗) = 0 and hence Pr(Xi ∈ ∂Ω∗) = 0. We therefore prefer our expres-
sion in terms of an integral with respect to the Hausdorff measure to any expressions in terms of conditional
expectations on the boundary.
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Figure 2.2: Illustration of the Change of Variables Techniques

(a)

(b)

over each level set in terms of the integral over the boundary ∂Ω∗:

∫
{x′∈Rp:ds

Ω∗ (x′)=λ}
g(x)dHp−1(x) =

∫
∂Ω∗

g(x∗ + λνΩ∗(x
∗))J∂Ω∗

p−1ψΩ∗(x
∗, λ)dHp−1(x∗), (2.10)

where νΩ∗(x
∗) is the inward unit normal vector of ∂Ω∗ at x∗ (the unit vector orthogonal

to all vectors in the tangent space of ∂Ω∗ at x∗ that points toward the inside of Ω∗).

J∂Ω∗
p−1ψΩ∗(x

∗, λ) is the Jacobian of the transformation ψΩ∗(x
∗, λ) = x∗ + λνΩ∗(x

∗). Figure

2.2b illustrates this change of variables formula. Finally, combining (2.9) and (2.10) and
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proceeding with further analysis, we prove in Appendix 2.C.4.3 that when g is continuous,

∫
N(∂Ω∗,δ)

g(x)dx = δ

(∫
∂Ω∗

g(x)dHp−1(x) + o(1)

)
.

Thus, the integral over the δ-neighborhood of ∂Ω∗ scaled up by δ−1 converges to the integral

over boundary points with respect to the (p−1)-dimensional Hausdorff measure. This result

is used to derive the expression of the probability limit of β̂1 given by (2.8).

2.5 Decision Making by Machine Learning

This section assesses the feasibility and performance of our method, by conducting a Monte

Carlo experiment motivated by decision making by machine learning with high-dimensional

data. Consider a tech company that applies a machine-learning-based deterministic decision

algorithm to a large segment of the population. At the same time, the company conducts a

randomized controlled trial (RCT) using the rest of the population. They are interested in

estimating treatment effects using data from both segments. Our approach offers a way of

exploiting not only the RCT segment but also the deterministic algorithm segment.

We simulate 1, 000 hypothetical samples from the following data-generating process.

Each sample {(Yi, Xi, Di, Zi)}ni=1 is of size n = 10, 000. There are 100 covariates (p = 100),

and Xi ∼ N (0,Σ). Yi(0) is generated as Yi(0) = 0.75X ′iα0 + 0.25ε0i, where α0 ∈ R100,

and ε0i ∼ N (0, 1). We consider two models for Yi(1), one in which the treatment effect

Yi(1)− Yi(0) does not depend on Xi and one in which the treatment effect depends on Xi.

Model A. Yi(1) = Yi(0) + ε1i, where ε1i ∼ N (0, 1).

Model B. Yi(1) = Yi(0) +X ′iα1, where α1 ∈ R100.

The choice of parameters Σ, α0 and α1 is explained in Appendix 2.D. Di(0) and Di(1) are

generated as Di(0) = 0 and Di(1) = 1{Yi(1)− Yi(0) > ui}, where ui ∼ N (0, 1).

To generate Zi, let q0.495 and q0.505 be the 49.5th and 50.5th (empirical) quantiles of

the first covariate Xi1. Let τpred(Xi) be a real-valued function of Xi, which we regard as a

prediction of the effect of recommendation on the outcome for individual i obtained from

114



past data. We construct τpred by random forests using an independent sample (see Appendix

2.D for the details). Zi is then generated as

Zi =


Z∗i ∼ Bernoulli(0.5) if Xi1 ∈ [q0.495, q0.505]

1 if Xi1 /∈ [q0.495, q0.505] and τpred(Xi) ≥ 0

0 if Xi1 /∈ [q0.495, q0.505] and τpred(Xi) < 0.

The first case corresponds to the RCT segment while the latter two cases to the deterministic

algorithm segment. The function A is given by

A(x) =


0.5 if x1 ∈ [q0.495, q0.505]

1 if x1 /∈ [q0.495, q0.505] and τpred(x) ≥ 0

0 if x1 /∈ [q0.495, q0.505] and τpred(x) < 0.

Finally, Di and Yi are generated as Di = ZiDi(1) + (1− Zi)Di(0) and Yi = DiYi(1) + (1−

Di)Yi(0), respectively.

Estimands and Estimators. We consider four parameters as target estimands: ATE ≡

E[Yi(1) − Yi(0)], ATE(RCT) ≡ E[Yi(1) − Yi(0)|Xi1 ∈ [q0.495, q0.505]], LATE ≡ E[Yi(1) −

Yi(0)|Di(1) 6= Di(0)], and LATE(RCT) ≡ E[Yi(1) − Yi(0)|Di(1) 6= Di(0), Xi1 ∈

[q0.495, q0.505]]. In the case where the treatment effect does not depend on Xi (Model A),

ATE and LATE are the same as ATE(RCT) and LATE(RCT), respectively. In the case

where the treatment effect depends on Xi (Model B), the conditional effects are heteroge-

neous. However, since the RCT segment consists of those in the middle of the distribution

of X1i, the average effect for the RCT segment is close to the unconditional average effect.

As a result, ATE is similar to ATE(RCT), and LATE is similar to LATE(RCT).

We use the data {(Yi, Xi, Di, Zi)}ni=1 to estimate the treatment effect parameters. Our

main approach is 2SLS with fixed-bandwidth APS controls in Theorem 2.1. To compute

fixed-bandwidth APS, we use S = 400 simulation draws for each observation.

We compare our approach with two naive alternatives. The first alternative is OLS of
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Yi on a constant and Di (i.e., the difference in the sample mean of Yi between the treated

group and untreated group) using all observations. The second alternative is 2SLS with

A(Xi) controls. This method uses the observations with A(Xi) ∈ (0, 1) to run the 2SLS

regression of Yi on a constant, Di, and A(Xi) using Zi as an instrument for Di (see (2.6)

and (2.7) in Section 2.4.3) and reports the coefficient on Di.

For both models, the 2SLS estimator converges in probability to LATE(RCT) (equiva-

lently, the right-hand side of equation (2.5)) whether we control for fixed-bandwidth APS or

A(Xi). However, 2SLS with A(Xi) controls uses only the individuals for the RCT segment

while 2SLS with fixed-bandwidth APS controls additionally uses the individuals near the

decision boundary of the deterministic algorithm (i.e., the boundary of the region for which

τpred(x) ≥ 0). Therefore, 2SLS with fixed-bandwidth APS controls is expected to produce

a more precise estimate than 2SLS with A(Xi) controls if the conditional effects for those

near the boundary are not far from the target estimand.

Results. Table 2.1 reports the bias, standard deviation (SD), and root mean squared

error (RMSE) of each estimator. Panels A and B present the results for the cases where the

conditional effects are homogeneous and heterogeneous, respectively. Note first that OLS

with no controls is significantly biased, showing the importance of correcting for omitted

variable bias. 2SLS with fixed-bandwidth APS controls achieves this goal, as demonstrated

by its smaller biases across possible treatment effect models, target parameters, and values

of the bandwidth δ that are sufficiently small.

2SLS with fixed-bandwidth APS controls shows a consistent pattern; as the bandwidth

δ grows, the bias increases while the variance declines. For several values of δ, 2SLS with

fixed-bandwidth APS controls outperforms 2SLS with A(Xi) controls in terms of the RMSE.

This finding implies that exploiting individuals near the multidimensional decision boundary

of the deterministic algorithm can lead to better performance than using only the individuals

in the RCT segment.

We also evaluate our inference procedure based on Theorem 2.1. Table 2.1 reports the

coverage probabilities of the 95% confidence intervals for LATE(RCT) constructed from

the estimates and their heteroskedasticity-robust standard errors. The confidence intervals
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Table 2.1: Bias, RMSE, and SD of Estimators and Coverage of 95% Confidence Intervals

Our Method: OLS with Approximate Propensity Score Controls
OLS 2SLS

with No
Controls

with
A(Xi)
Controls

δ = 0.01 δ = 0.05 δ = 0.1 δ = 0.25 δ = 0.5 δ = 1

Panel A: Homogeneous Conditional Effects (Model A)

Estimand: ATE = 0
Bias 0.663 0.558 0.564 0.615 0.652 0.716 0.810 0.965
RMSE 0.663 0.661 0.596 0.625 0.658 0.719 0.813 0.967

Estimand: ATE(RCT) = −0.001
Bias 0.663 0.558 0.564 0.616 0.653 0.716 0.811 0.965
RMSE 0.664 0.661 0.596 0.625 0.659 0.720 0.813 0.967

Estimand: LATE = 0.564
Bias 0.098 −0.007 −0.001 0.051 0.088 0.152 0.246 0.400
RMSE 0.101 0.354 0.194 0.122 0.126 0.167 0.254 0.405

Estimand: LATE(RCT) = 0.566
Bias 0.096 −0.009 −0.003 0.048 0.086 0.149 0.244 0.398
RMSE 0.099 0.354 0.194 0.121 0.124 0.165 0.252 0.403

SD 0.021 0.354 0.194 0.111 0.090 0.070 0.062 0.060
Coverage 0.4% 95.2% 94.4% 92.7% 84.0% 46.0% 3.1% 0.0%
Avg N 10000.0 100.0 397.0 1175.0 1722.0 2613.0 3349.0 3994.0

Panel B: Heterogeneous Conditional Effects (Model B)

Estimand: ATE = 0
Bias 1.010 0.541 0.470 0.491 0.521 0.589 0.696 0.883
RMSE 1.010 0.667 0.519 0.507 0.532 0.594 0.700 0.885

Estimand: ATE(RCT) = −0.004
Bias 1.014 0.546 0.474 0.496 0.526 0.593 0.701 0.887
RMSE 1.014 0.670 0.523 0.512 0.536 0.599 0.704 0.890

Estimand: LATE = 0.564
Bias 0.446 −0.023 −0.094 −0.073 −0.042 0.025 0.132 0.319
RMSE 0.446 0.390 0.240 0.146 0.112 0.084 0.150 0.325

Estimand: LATE(RCT) = 0.559
Bias 0.450 −0.018 −0.090 −0.068 −0.038 0.029 0.137 0.323
RMSE 0.451 0.390 0.238 0.144 0.110 0.085 0.154 0.330

SD 0.018 0.389 0.221 0.127 0.104 0.080 0.071 0.065
Coverage 0.0% 94.6% 92.4% 91.7% 94.1% 93.5% 51.8% 0.3%
Avg N 10000.0 100.0 397.0 1175.0 1722.0 2613.0 3349.0 3994.0

Notes: This table shows the bias, root mean squared error (RMSE), and standard deviation (SD) of OLS with no
controls, 2SLS with A(Xi) controls, and 2SLS with Approximate Propensity Score controls. These statistics are
computed with the estimand set to ATE, ATE(RCT), LATE, or LATE(RCT). The row in each panel shows the
probabilities that the 95% confidence intervals of the form [β̂s1 − 1.96σ̂sn, β̂

s
1 + 1.96σ̂sn] contains LATE(RCT), where

β̂s1 is the estimate and σ̂sn is its heteroskedasticity-robust standard error. We use 1,000 replications of a size 10,000
simulated sample to compute these statistics. We use several possible values of δ to compute the Approximate
Propensity Score. All Approximate Propensity Scores are computed by averaging 400 simulation draws of A(Xi).
Panel A reports the results under the model in which the treatment effect does not depend on Xi (Model A). Panel
B reports the results under the model in which the treatment effect depends on Xi (Model B). The bottom row in
each panel shows the average number of observations used for estimation (i.e., the average number of observations for
which the Approximate Propensity Score or A(Xi) is strictly between 0 and 1).

for 2SLS offer nearly correct coverage when δ is small, which supports the implication of

Theorem 2.1 that the inference procedure is valid when we use a sufficiently small δ. Overall,
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Table 2.1 shows that our estimator works well in this high-dimensional setting and performs

better than alternative estimators.

2.6 Empirical Policy Application

2.6.1 Hospital Relief Funding during the COVID-19 Pandemic

Here we provide our real-world empirical application. The COVID-19 pandemic has afflicted

millions of people across the country and has imposed historic challenges for the hospitals

and health systems. The pandemic led to revenue losses coupled with skyrocketing expenses,

pushing many already overburdened hospitals further to their financial brink.

To deal with this crisis, as part of the 3-phase Coronavirus Aid, Relief, and Economic

Security (CARES) Act, the US government has distributed tens of billions of dollars of relief

funding to hospitals since April 2020. This funding intended to help health care providers

hit hardest by the COVID-19 outbreak and at a high risk of closing. The bill specified that

providers may (but are not required to) use the funds for COVID-19-related expenses, such

as construction of temporary structures, leasing of properties, purchasing medical supplies

and equipment (including personal protective equipment and testing supplies), increased

workforce utilization and training, establishing emergency operation centers, retrofitting

facilities and managing the surge in capacity, among others.

We ask whether this funding had a causal impact on hospital operation and activities

in dealing with COVID-19 patients. Answering this question would help the government

respond to future healthcare crises in more effective ways. We focus on an initial portion of

this funding ($10 billion). This portion was allocated to hospitals that qualified as “safety

net hospitals” according to a specific eligibility criterion. This eligibility criterion intends to

direct funding towards hospitals that “disproportionately provide care to the most vulnerable,

and operate on thin margins.” Specifically, an acute care hospital was deemed eligible for

funding if the following conditions hold:

• Medicare Disproportionate Patient Percentage (DPP) of 20.2% or greater. DPP is

equal to the sum of (1) the percentage of Medicare inpatient days attributable to

patients eligible for both Medicare Part A and Supplemental Security Income (SSI),
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and (2) the percentage of total inpatient days attributable to patients eligible for

Medicaid but not Medicare Part A.

• Annual Uncompensated Care (UCC) of at least $25, 000 per bed. UCC is a measure of

hospital care provided for which no payment was received from the patient or insurer.

It is the sum of a hospital’s bad debt and the financial assistance it provides.

• Profit Margin (net income/(net patient revenue + total other income)) of 3.0% or less.

Hospitals that do not qualify on any of the three dimensions are funding ineligible. Figure

2.3 visualizes how the three dimensions determine funding eligibility. From the original

space of the three eligibility determinants, we extract two-dimensional planes to better

visualize the structure of quasi-experimental variation. As the bottom two-dimensional

planes show, eligibility discontinuously changes as hospitals cross the eligibility boundary in

the characteristic space. This setting is a three-dimensional fuzzy RDD, falling under our

framework.

Our treatment is the funding amount, which is calculated as follows. Each eligible

hospital is assigned an individual facility score, which is calculated as the product of DPP

and the number of beds in that hospital. This facility score determines the share of funding

allocated to the hospital, out of the total $10 billion. The share received by each hospital

is determined by the ratio of the hospital’s facility score to the sum of facility scores across

all eligible hospitals. The amount of funding that can be received by a hospital is bounded

below at $5 million and capped above at $50 million.26

Figure 2.4 shows the distribution of funding amounts received by eligible hospitals. A

majority of eligible hospitals receive the minimum amount of $5 million. A small mass of

hospitals receive amounts close to the maximum of $50 million. We replicate the funding

eligibility status as well as the amount of funding received, by using publicly available data

from the Healthcare Cost Report Information System (HCRIS) for the 2018 financial year.27

26. We avoid using the founding amount as Zi since the founding amount for a hospital is continuous and
determined not only by that hospital’s characteristics but also by characteristics of other hospitals.

27. We use the methodology detailed in the CARES ACT website to project funding based on 2018
financial year cost reports. We use the RAND cleaned version of the dataset which can be accessed at
https://www.hospitaldatasets.org/
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Figure 2.3: Three-dimensional Regression Discontinuity in Hospital Funding Eligibility

Notes: The top figure visualizes the three hospital characteristics that determine funding eligibility. The bottom
figures show the data points plotted along 2 out of 3 dimensions. The bottom left panel plots disproportionate patient
percentage against profit margin, while the bottom right panel plots uncompensated care per bed against profit
margin. We remove hospitals above the 99th percentile of disproportionate patient percentage and uncompensated
care per bed, for visibility purposes.

Our primary outcomes are a few different versions of the number of COVID patients hos-

pitalized at each hospital. To obtain these outcomes, we use the publicly available COVID-19
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Figure 2.4: Funding Distribution for Eligible Hospitals
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Notes: The figure shows the distribution of funding amounts for eligible hospitals. Each eligible hospital is assigned
an individual facility score, which is the product of Disproportionate Patient Percentage and number of beds in the
hospital. The share of $10 billion received by an eligible hospital is determined by the ratio of the individual facility
score of that hospital to the sum of facility scores across all eligible hospitals. The amount of funding that can be
received by an eligible hospital is calculated as the product of this ratio and $10 billion, and is bounded below at $5
million and bounded above at $50 million.

Reported Patient Impact and Hospital Capacity by Facility dataset. This provides facility-

level data on hospital utilization aggregated on a weekly basis, from July 31st 2020 onwards.

Summary statistics about hospital outcomes and characteristics are documented in Table

2.2. Eligible hospitals have larger numbers of inpatient and ICU beds occupied by COVID-

19 patients. Eligible hospitals also have a higher disproportionate patient percentage, higher

uncompensated care per bed, lower profit margins, more employees and beds, and shorter

lengths of inpatient stay. These patterns are consistent with the funding’s goal of helping

struggling hospitals.

2.6.2 Covariate Balance Estimates

We first validate our method by evaluating the balancing property of fixed-bandwidth APS

conditioning. To do so, we calculate fixed-bandwidth-APS-controlled differences in covariate

means for hospitals who are and are not deemed eligible for funding. Specifically, we run

the following OLS regression of hospital-level characteristics on the eligibility status using
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Table 2.2: Hospital Characteristics and Outcomes

All Ineligible Eligible Hospitals
w/

Hospitals Hospitals APS ∈ (0,1)

Panel A: Outcome Variable Means
# Confirmed/Suspected COVID Patients 105.59 98.41 136.61 125.19
# Confirmed COVID Patients 80.10 73.86 107.83 86.78
# Confirmed/Suspected COVID Patients in ICU 31.37 28.92 42.10 36.84
# Confirmed COVID Patients in ICU 26.62 24.41 36.56 31.41
N 4,008 3,293 715 429

Panel B: Hospital Characteristics Means
Beds 143.66 134.60 188.35 206.47
Interns and residents (full-time equivalents) per bed .06 .05 .11 .09
Adult and pediatric hospital beds 120.26 113.29 154.66 170.49
Ownership: Proprietary (for-profit) .19 .20 .18 .15
Ownership: Governmental .22 .22 .23 .16
Ownership: Voluntary (non-profit) .58 .58 .59 .68
Inpatient length of stay 9.21 10.14 4.66 4.38
Employees on payroll (full-time equivalents) 973.90 897.31 1351.57 1525.06
Disproportionate patient percentage .21 .18 .38 .36
Uncompensated care per bed ($) 59,850.00 56,556.03 76,096.31 45,996.48
Profit margin .02 .04 −.07 −.03
N 4,633 3,852 781 485

Notes: This table reports averages of outcome variables and hospital characteristics by funding eligibility. Panel A
reports the outcome variable means. Outcome variable estimates are 7 day sums for the week spanning July 31st
2020 to August 6th 2020. Confirmed or Suspected COVID patients refer to the sum of patients in inpatient beds with
lab-confirmed/suspected COVID. Confirmed COVID patients refer to the sum of patients in inpatient beds with lab-
confirmed COVID, including those with both lab-confirmed COVID and influenza. Inpatient bed totals also include
observation beds. Similarly, Confirmed/Suspected COVID patients in ICU refer to the sum of patients in ICU beds
with lab-confirmed or suspected COVID. Confirmed COVID patients in ICU refers to the sum of patients in ICU
beds with lab-confirmed COVID, including those with both lab-confirmed COVID and influenza. Panel B reports the
means for hospital characteristics for the financial year 2018. Column 1 shows the means for All Hospitals. Columns 2
and 3 show the means for hospitals that are ineligible and eligible to receive funding respectively. Column 4 shows the
means for the hospitals with nondegenerate Approximate Propensity Score with bandwidth δ = 0.05. Approximate
Propensity Score is computed by averaging 10,000 simulation draws.

observations with ps(Xi; δ) ∈ (0, 1):

Wi = γ0 + γ1Zi + γ2p
s(Xi; δ) + ηi,

whereWi is one of the predetermined characteristics of the hospital, Zi is a funding eligibility

dummy, Xi is a vector of the three input variables (DPP, UCC, and profit margin) that

determine the funding eligibility, and ps(Xi; δ) is the simulated fixed-bandwidth APS. We

compute fixed-bandwidth APS using S = 10, 000 simulation draws for different bandwidth

values.28 The estimated coefficient on Zi is the fixed-bandwidth-APS-controlled difference in

28. Figure 2.7 in Appendix 2.E.4 reports fixed-bandwidth APS for several hospitals with varying numbers of
simulation draws. We find that S = 10, 000 is sufficient for well stabilizing fixed-bandwidth APS simulation.
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the mean of the covariate between eligible and ineligible hospitals. For comparison, we also

run the OLS regression of hospital characteristics on the eligibility status with no controls

using the whole sample.

Table 2.3 reports the covariate balance estimates. Column 2 shows that, without con-

trolling for fixed-bandwidth APS, eligible hospitals are significantly different from ineligible

hospitals. We find that all the relevant hospital eligibility characteristics are strongly asso-

ciated with eligibility. Once we control for fixed-bandwidth APS with small enough band-

width δ, eligible and ineligible hospitals have similar financial and utilization characteristics,

as reported in columns 3–7 of Table 2.3. These estimates are consistent with our theoreti-

cal results, establishing the empirical ability of fixed-bandwidth APS controls to eliminate

selection bias.

2.6.3 2SLS Estimates

The balancing performance of fixed-bandwidth APS motivates us to estimate causal effects

of funding by 2SLS using funding eligibility as an instrument for the amount of funding

received. We study the effect of funding on relevant hospital outcomes, such as the number

of inpatient beds occupied by adult COVID patients between July 31st 2020 and August

6th 2020. We run the following 2SLS regression on four different hospital-level outcome

variables, using hospitals with ps(Xi; δ) ∈ (0, 1):

Di = γ0 + γ1Zi + γ2p
s(Xi; δ) + vi

Yi = β0 + β1Di + β2p
s(Xi; δ) + εi,

where Yi is a hospital-level outcome and Di is the amount of relief funding received.29 We

also run the OLS and 2SLS regressions with no controls, as well as OLS regression controlling

for the three eligibility determinants (disproportionate patient percentage, uncompensated

29. This specification uses a continuous treatment, unlike our theoretical framework with a binary treat-
ment. We obtain similar results when the treatment is a binary transformation of the amount of relief funding
received (e.g., a dummy indicating whether the amount exceeds a certain value). Results are available upon
request.
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Table 2.3: Covariate Balance Regressions

Our Method: OLS with Approximate Propensity Score ControlsMean No
(Ineligi-
ble

Hospi-
tals)

Controls δ =
0.01

δ =
0.025

δ =
0.05

δ =
0.075

δ =
0.1

δ =
0.25

δ =
0.5

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Determinants of Funding Eligibility

Profit margin .04 −0.11*** −0.03 −0.00 0.02 0.01 0.02 0.05*** 0.06***
(0.01) (0.06) (0.04) (0.03) (0.03) (0.02) (0.01) (0.01)
N=4633 N=89 N=239 N=485 N=671 N=879 N=1726 N=2368

Uncompensated 56556 19,540*** 4,905 10,761 −4,229 −9,600 −11,001 −8,005* −6,121*
care per bed ($) (3,827) (12,161) (10,356) (8,611) (7,651) (6,976) (4,498) (3,660)

N=4633 N=89 N=239 N=485 N=671 N=879 N=1726 N=2368
Disproportionate .18 0.21*** −0.09 −0.09 −0.09 −0.08 −0.08* −0.06** −0.07***
patient percentage (0.01) (0.09) (0.07) (0.07) (0.06) (0.05) (0.02) (0.02)

N=4633 N=89 N=239 N=485 N=671 N=879 N=1726 N=2368

Panel B: Other Hospital Characteristics

Full time employees 897.32 454.26***2,670.64 387.75 37.55 90.96 64.41 214.79 115.94
(69.23) (1,652.55)(997.64) (668.32) (515.72) (414.25) (218.77) (143.35)
N=4626 N=89 N=238 N=484 N=670 N=878 N=1723 N=2365

Medicare net revenue 20.04 18.36*** 35.34 −7.92 −6.16 −1.47 2.41 4.70 −0.47
(in millions $) (2.39) (29.74) (18.36) (14.34) (12.09) (10.81) (6.63) (4.68)

N=4511 N=88 N=238 N=483 N=667 N=875 N=1684 N=2323
Occupancy .44 0.07*** 0.19** 0.07 −0.00 0.01 0.01 0.03* 0.04***

(0.01) (0.09) (0.06) (0.04) (0.04) (0.03) (0.02) (0.01)
N=4624 N=89 N=239 N=485 N=671 N=879 N=1726 N=2368

Operating margin .02 −0.11*** −0.03 0.00 0.02 0.02 0.03 0.06*** 0.07***
(0.01) (0.06) (0.04) (0.03) (0.03) (0.03) (0.02) (0.01)
N=4541 N=88 N=238 N=477 N=661 N=868 N=1676 N=2314

Beds 134.6 53.75*** 198.67* 35.86 2.93 7.02 11.93 17.47 8.92
(7.05) (105.74) (66.42) (47.75) (39.24) (33.06) (20.05) (14.46)
N=4633 N=89 N=239 N=485 N=671 N=879 N=1726 N=2368

Costs per discharge 66.28 −49.95***3.83* 3.37** 1.65 −6.42 −0.88 6.06 6.76
(in thousands $) (17.93) (2.18) (1.49) (1.23) (8.12) (2.58) (4.63) (5.09)

N=3539 N=89 N=239 N=485 N=671 N=879 N=1726 N=2368

p-value joint significance 0 .74 .457 .87 .745 .286 0 0

Notes: This table shows the results of the covariate balance regressions at the hospital level. The dependent variables
for these regressions are drawn from the Healthcare Cost Report Information System for the financial year 2018. Dis-
proportionate patient percentage, profit margin and uncompensated care per bed are used to determine the hospital’s
funding eligibility. Other dependent variables shown indicate the financial health and utilization of the hospitals.
In column 2, we regress the dependent variables on the eligibility of the hospital with no controls. In columns 3–
9, we regress the dependent variables on funding eligibility controlling for the Approximate Propensity Score with
different values of bandwidth δ. All Approximate Propensity Scores are computed by averaging 10,000 simulation
draws. Column 1 shows the mean of dependent variables for hospitals that are ineligible to receive safety net funding.
Robust standard errors are reported in the parenthesis and the number of observations is reported separately for each
regression. The last row reports the p-value of the joint significance test. */**/*** indicate p < 0.10/0.05/0.01.

care per bed and profit margin).30 These alternative regressions are computed using the

sample of all hospitals, as benchmark estimators.

30. Precisely speaking, we run the following specification of each alternative estimator for each hospital-
level outcome variable Yi. For the OLS regression without any controls, we estimate:

Yi = β0 + β1Di + εi.
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The first-stage effects of funding eligibility on funding amount (in millions of dollars)

suggest that funding eligibility boosts the amount of funding significantly (columns 3–10 of

Table 2.4). For example, in column 3 of Table 2.4, we see that funding eligibility increases

funding by approximately 15 million dollars on average.

OLS estimates of funding effects, reported as the benchmark in column 1 of Table

2.4, indicate that funding is associated with a higher number of adult inpatient beds and

higher number of staffed ICU beds utilized by patients who have lab-confirmed or suspected

COVID. For example, the estimates indicate that a million dollar increase in funding is

associated with 5.58 more adult inpatient beds occupied by patients with lab-confirmed or

suspected COVID. The corresponding increase in staffed ICU beds occupied by those who

have lab-confirmed or suspected COVID is 1.67. These uncontrolled OLS estimates show

a similar picture as the descriptive statistics in Table 2.2. Naive 2SLS estimates with no

controls and OLS with covariate controls produce similar significantly positive associations

of funding with outcomes.

However, the OLS or uncontrolled 2SLS estimates turn out to be an artifact of selec-

tion bias. In contrast with these naive estimates, our preferred 2SLS estimates with fixed-

bandwidth APS controls show a different picture (columns 4–10). The gains in the number

of inpatient beds and staffed ICU beds occupied by suspected or lab-confirmed COVID

patients become much smaller and lose significance across all bandwidth specifications. In

fact, even the sign of the estimated funding effects is reversed for several combinations of

the outcome and bandwidth. Once we control for fixed-bandwidth APS to eliminate the

bias, therefore, funding has little to no effect on the hospital utilization level by COVID-19

patients. These results suggest that fixed-bandwidth APS reveals important selection bias

For the 2SLS regression without any controls, we run:

Di = γ0 + γ1Zi + vi

Yi = β0 + β1Di + εi.

For the OLS regression controlling for disproportionate patient percentage, uncompensated care per bed and
profit margin, we estimate:

Yi = β0 + β1Di + β2Xi1 + β3Xi2 + β4Xi3 + εi,

where Xi1 is disproportionate patient percentage, Xi2 is uncompensated care per bed, and Xi3 is profit
margin.
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Table 2.4: Estimated Effects of Funding on Hospital Utilization

OLS
with

OLS
with

2SLS
with

Our Method: 2SLS with Approximate Propensity Score Controls

No Covariate No
Controls Controls Controls δ =

0.01
δ =

0.025
δ =
0.05

δ =
0.075

δ =
0.1

δ =
0.25

δ =
0.5

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

# Confirmed/Suspected COVID Patients

First stage 13.78*** 15.11** 13.34*** 14.28*** 14.19*** 13.89*** 13.96*** 13.06***
(in millions $) (0.49) (5.83) (3.54) (2.27) (1.87) (1.61) (1.03) (0.74)
$1mm of funding 5.58*** 3.25*** 2.77*** −1.03 −1.86 −3.10 −4.08 −2.91 0.15 −0.31

(0.68) (0.89) (0.58) (5.64) (5.40) (4.99) (4.57) (3.58) (1.59) (1.21)
N 3532 3532 3532 73 195 392 547 719 1389 1947

# Confirmed COVID Patients

First stage 13.90*** 16.55*** 14.37*** 15.05*** 14.81*** 14.42*** 14.10*** 13.19***
(in millions $) (0.50) (6.11) (3.66) (2.33) (1.91) (1.64) (1.04) (0.75)
$1mm of funding 4.53*** 2.50*** 2.44*** 0.05 −2.14 1.42 0.13 −0.03 −0.09 −0.63

(0.63) (0.79) (0.50) (4.33) (3.97) (2.17) (1.97) (1.74) (1.12) (0.96)
N 3558 3558 3558 70 191 385 539 709 1366 1923

# Confirmed/Suspected COVID Patients in ICU

First stage 13.88*** 14.67** 13.42*** 15.75*** 15.29*** 14.74*** 14.31*** 13.18***
(in millions $) (0.51) (5.59) (3.49) (2.32) (1.93) (1.67) (1.06) (0.76)
$1mm of funding 1.67*** 0.91*** 0.95*** 0.93 0.71 0.36 −0.05 0.16 −0.03 −0.32

(0.21) (0.28) (0.18) (1.47) (1.27) (0.74) (0.70) (0.60) (0.40) (0.36)
N 3445 3445 3445 72 186 374 520 678 1314 1846

# Confirmed COVID Patients in ICU

First stage 13.89*** 15.80** 13.79*** 15.78*** 15.53*** 15.08*** 14.43*** 13.40***
(in millions $) (0.50) (6.15) (3.73) (2.41) (2.02) (1.73) (1.09) (0.77)
$1mm of funding 1.51*** 0.82*** 0.88*** 0.50 −0.11 0.18 0.04 0.12 −0.13 −0.35

(0.21) (0.27) (0.17) (1.54) (1.37) (0.70) (0.64) (0.56) (0.39) (0.34)
N 3503 3503 3503 67 181 370 514 671 1321 1868

Notes: In this table we regress relevant outcomes at the hospital level on the amount of funding. Column 1 presents the
results of OLS regression of the outcome variables on funding without any controls. Column 2 presents the results of
OLS regression of the outcome variables on funding controlling for disproportionate patient percentage, uncompensated
care per bed and profit margin. In columns 3–10, we instrument the amount of funding with eligibility to receive this
funding and present the results of 2SLS regressions. In columns 3–10, the first stage shows the effect of being deemed
eligible on the amount of relief funding received by hospitals, in millions of dollars. Column 3 shows the results of a
2SLS regression with no controls. In columns 4–10, we run this regression controlling for the Approximate Propensity
Score with different values of bandwidth δ on the sample with nondegenerate Approximate Propensity Scores. All
Approximate Propensity Scores are computed by averaging 10,000 simulation draws. The outcome variables are the
7 day totals for the week spanning July 31st, 2020 to August 6th, 2020. Confirmed or Suspected COVID patients
refer to the sum of patients in inpatient beds with lab-confirmed/suspected COVID-19. Confirmed COVID patients
refer to the sum of patients in inpatient beds with lab-confirmed COVID-19, including those with both lab-confirmed
COVID-19 and influenza. Inpatient bed totals also include observation beds. Similarly, Confirmed/Suspected COVID
patients in ICU refer to the sum of patients in ICU beds with lab-confirmed or suspected COVID-19. Confirmed
COVID patients in ICU refers to the sum of patients in ICU beds with lab-confirmed COVID-19, including those with
both lab-confirmed COVID-19 and influenza. Robust standard errors are reported in parentheses. */**/*** indicate
p < 0.10/0.05/0.01.

in the naively estimated effects of funding.31

31. The 2SLS estimates in Table 2.4 are unlikely to be compromised by differential attrition. Estimates
reported in Table 2.5 in Appendix 2.E.4 show little difference in outcome availability rates between eligible
and ineligible hospitals once we control for fixed-bandwidth APS.
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Figure 2.5: Dynamic Effects of Funding on Weekly Hospital Outcomes
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(c) # Confirmed/Suspected COVID Patients in ICU
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(d) # Confirmed COVID Patients in ICU

Notes: The figure shows the results of estimating our main 2SLS specification about the effect of $1mm of relief funding
on weekly hospital outcomes from 07/31/2020 to 04/02/2021. The outcomes record the 7-day sum of the number of
hospitalized patients with the specified condition. We compute the Approximate Propensity Score with S = 10, 000
and δ = 0.05. The estimates from the uncontrolled OLS, uncontrolled 2SLS, and 2SLS with the Approximate
Propensity Score controls are plotted on the y-axis. Grey areas are 95% confidence intervals.

2.6.4 Persistence and Heterogeneity

The above analysis looks at the immediate effects of relief funding. However, the effects of

relief funding might kick in after a time lag, given that expansion in capacity and staff takes

time. To investigate the relevance of this concern, we measure the evolving effects of relief

funding. We estimate our main 2SLS specification on the 7-day average of each hospital

outcome for each week from July 31st, 2020 to April 2nd, 2021. We plot the estimated

dynamic effects in Figure 2.5. The estimated dynamic effects are similar to the initial null

effects in Table 2.4, even several months after the distribution of relief funding. This dynamic
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analysis suggests that funding has no substantial effect even in the long run.

We further extend this analysis by estimating the heterogeneous effects of funding for

different types of hospitals. Figure 2.6 plots the resulting estimates by repeating the same

dynamic analysis as in Figure 2.5, but for different groups of hospitals defined by hospital

size and ownership type. Overall, hospitals with different characteristics sometimes face

different trends of funding effects, but none of the differences is statistically significant at

the 5% level. We do not find any strong evidence of heterogeneity in the funding effects at

any point in time.

Having said that, there is some suggestive indication of potential heterogeneity. In

Figure 2.6a, for example, the estimated funding effect spiked among the hospitals in the

lowest quartile of revenue from December 2020 to February 2021. This trend may suggest

that the funding was able to alleviate the financial burden faced by struggling hospitals in

this strata and allowed them to take on new patients during the winter surge.

There is also a sizable dip in the funding effect of for-profit hospitals around the same

period. This could be due to regional differences in the distribution of hospital ownership.

Nonprofits and government-managed hospitals tend to be in rural areas, which both received

more funding and experienced a worse surge during the winter. On the other hand, the for-

profits that received funding tend to be in urban areas and experienced a less extreme winter

wave.

The overall insignificance of the estimates suggests that funding by the CARES Act had

largely no effect on hospital utilization trends during the pandemic. The null effect is widely

observed for subgroups of hospitals at different points in time. This finding is consistent

with policy and media arguments that CARES Act funding was not well targeted toward

needy providers. Unlike the previous arguments and descriptive analyses, the analysis here

provides causal evidence supporting the concern.

2.7 Other Examples

Here we give real-world examples of other algorithms and discuss the applicability of our

framework.
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Figure 2.6: Dynamic Heterogeneous Effects of Hospital Funding by Hospital Characteristics
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(d) Inpatient Length of Stay
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Notes: The figure shows the results of estimating our main 2SLS specification of the effect of $1mm of relief funding
on weekly confirmed/suspected Covid-19 patients from 07/31/2020 to 04/12/2021, where the sample is stratified by
quartiles of different hospital characteristics, or ownership type. No effect estimates are significantly different from
each other at the 5% level. We compute APS with S = 10, 000 and δ = 0.05.
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Example 2.1 (Bandit Algorithms). We are constantly exposed to digital information

(movie, music, news, search results, advertisements, and recommendations) through a va-

riety of devices and platforms. Tech companies allocate these pieces of content by using

bandit algorithms. Our method is applicable to bandit algorithms. For simplicity, assume a

perfect-compliance scenario where the company perfectly controls the treatment assignment

(Di = Zi). The algorithms below first use past data and supervised learning to estimate the

conditional means and variances of potential outcomes, E[Yi(z)|Xi] and Var(Yi(z)|Xi), for

each z ∈ {0, 1}. Let µz and σ2
z denote the estimated functions. The algorithms use µz(Xi)

and σ2
z(Xi) to determine the treatment assignment for individual i.

(a) (Thompson Sampling Using Gaussian Priors) The algorithm first samples potential

outcomes from the normal distribution with mean (µ0(Xi), µ1(Xi)) and variance-

covariance matrix diag(σ2
0(Xi), σ

2
1(Xi)). The algorithm then chooses the treatment

with the highest sampled potential outcome:

ZTSi ≡ arg max
z∈{0,1}

y(z), ATS(Xi) = E[arg max
z∈{0,1}

y(z)|Xi],

where y(z) ∼ N (µz(Xi), σ
2
z(Xi)) independently across z. These algorithms often in-

duce quasi-experimental variation in treatment assignment, as a strand of the computer

science literature has observed (Precup, 2000; Li et al., 2010; Narita, Yasui and Yata,

2019; Saito, Aihara, Matsutani and Narita, 2021). Suppose that the functions µ0(·),

µ1(·), σ2
0(·) and σ2

1(·) are continuous. The function A and APS have an analytical

expression:

ATS(x) = pTS(x) = 1− Φ

(
µ0(x)− µ1(x)√
σ2

0(x) + σ2
1(x)

)
,

where Φ is the cumulative distribution function of a standard normal distribution. This

APS is nondegenerate, meaning that the data from the algorithm allow for causal-

effect identification. Furthermore, if the functions µ0(·), µ1(·), σ2
0(·) and σ2

1(·) are

continuously differentiable, this algorithm satisfies Assumption 2.4 (a) and (b), which

are required for asymptotic normality when Pr(A(Xi) ∈ (0, 1)) > 0.

(b) (Upper Confidence Bound, UCB) Unlike the above stochastic algorithm, the UCB
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algorithm is a deterministic algorithm, producing a less obvious example of our frame-

work. This algorithm chooses the treatment with the highest upper confidence bound

for the potential outcome:

ZUCBi ≡ arg max
z=0,1

{µz(Xi) + ασz(Xi)}, AUCB(x) = arg max
z=0,1

{µz(x) + ασz(x)},

where α is chosen so that |µz(x) − E[Yi(z)|Xi = x]| ≤ ασz(x) at least with some

probability, for example, 0.95, for every x. Suppose that the function g = µ1 − µ0 +

α(σ1 − σ0) is continuous on X and is continuously differentiable in a neighborhood of

x with ∇g(x) 6= 0 for any x ∈ X such that g(x) = 0. APS for this case is given by

pUCB(x) =


0 if µ1(x) + ασ1(x) < µ0(x) + ασ0(x)

0.5 if µ1(x) + ασ1(x) = µ0(x) + ασ0(x)

1 if µ1(x) + ασ1(x) > µ0(x) + ασ0(x).

This means that the UCB algorithm produces potentially complicated quasi-

experimental variation along the boundary in the covariate space where the algo-

rithm’s treatment recommendation changes from one to the other. If, in addition,

g is twice continuously differentiable along the boundary, this algorithm satisfies As-

sumption 2.3 (d), which is required for consistency and asymptotic normality when

Pr(A(Xi) ∈ (0, 1)) = 0. It is possible to identify and estimate causal effects across the

boundary.

Example 2.2 (Unsupervised Learning). Customer segmentation is a core marketing prac-

tice that divides a company’s customers into groups based on their characteristics and be-

havior so that the company can effectively target marketing activities at each group. Many

businesses today use unsupervised learning algorithms, clustering algorithms in particular,

to perform customer segmentation. Using our notation, assume that a company decides

whether it targets a campaign at customer i (Zi = 1) or not (Zi = 0). The company first

uses a clustering algorithm such as K-means clustering or Gaussian mixture model clus-

tering to divide customers into K groups, making a partition {S1, ..., SK} of the covariate
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space Rp. The company then conducts the campaign targeted at some of the groups:

ZCLi ≡ 1{Xi ∈ ∪k∈TSk}, ACL(x) = 1{x ∈ ∪k∈TSk},

where T ⊂ {1, ..,K} is the set of the indices of the target groups.

For example, suppose that the company uses K-means clustering, which creates a par-

tition in which a covariate value x belongs to the group with the nearest centroid. Let

c1, ..., cK be the centroids of the K groups. Define a set-valued function C : Rp → 2{1,...,K},

where 2{1,...,K} is the power set of {1, ...,K}, as C(x) ≡ arg mink∈{1,...,K} ‖x−ck‖. If C(x) is

a singleton, x belongs to the unique group in C(x). If C(x) contains more than one indices,

the group to which x belongs is arbitrarily determined. APS for this case is given by

pCL(x) =


0 if C(x) ∩ T = ∅

0.5 if |C(x)| = 2, x ∈ ∂(∪k∈TSk)

1 if C(x) ⊂ T

and pCL(x) ∈ (0, 1) if |C(x)| ≥ 3 and x ∈ ∂(∪k∈TSk), where |C(x)| is the number of elements

in C(x).32 Thus, it is possible to identify causal effects across the boundary ∂(∪k∈TSk).

Assumption 2.3 (d) approximately holds in that the target group ∪k∈TSk is arbitrarily well

approximated by a set that satisfies the differentiability condition.

Example 2.3 (Supervised Learning). Millions of times each year, judges make jail-or-

release decisions that hinge on a prediction of what a defendant would do if released. Many

judges now use proprietary algorithms (like COMPAS criminal risk score) to make such

predictions and use the predictions to support jail-or-release decisions. Using our notation,

assume that a criminal risk algorithm recommends jailing (Zi = 1) or releasing (Zi = 0) for

each defendant i. The algorithm uses defendant i’s observable characteristics Xi, including

criminal history and demographics. The algorithm first translates Xi into a risk score r(Xi),

where r : Rp → R is a function estimated by supervised learning based on past data and

32. If |C(x)| = 2 and x ∈ ∂(∪k∈TSk), x is on a linear boundary between one target group and one
non-target group, and hence APS is 0.5. If |C(x)| ≥ 3 and x ∈ ∂(∪k∈TSk), x is a common endpoint of
several group boundaries, and APS is determined by the angles at which the boundaries intersect.
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assumed to be fixed. For example, Kleinberg et al. (2017) construct a version of r(Xi) using

gradient boosted decision trees. The algorithm then uses the risk score to make the final

recommendation:

ZSLi ≡ 1{r(Xi) > c}, ASL(x) = 1{r(x) > c},

where c ∈ R is a constant threshold that is set ex ante. A similar procedure applies to the

screening of potential borrowers by banks and insurance companies based on credit scores

estimated by supervised learning (Agarwal, Chomsisengphet, Mahoney and Stroebel, 2017).

A widely-used approach to identifying and estimating treatment effects in these settings

is to use the score r(Xi) as a continuous univariate running variable and apply a univariate

RDD method (Cowgill, 2018). However, whether r(Xi) is continuously distributed or not

depends on how the function r is constructed. For example, suppose that r is constructed

by a tree-based algorithm and is the following simple regression tree with three terminal

nodes:

r(x) =


r1 if x1 ≤ 0

r2 if x1 > 0, x2 ≤ 0

r3 if x1 > 0, x2 > 0,

where r1 < r2 < c < r3. In this case, the score r(Xi) is a discrete variable. It may not be

suitable to apply a standard univariate RDD method.

In contrast, our approach is applicable as long as X1i and X2i are continuously dis-

tributed. . Since ASL(x) = 1{r(x) > c} = 1{x1 > 0, x2 > 0}, APS for this case is given

by

pSL(x) =



0 if x1 < 0 or x2 < 0

0.25 if x1 = x2 = 0

0.5 if (x1 = 0, x2 > 0) or (x1 > 0, x2 = 0)

1 if x1 > 0, x2 > 0.

It is therefore possible to identify causal effects across the boundary {x ∈ X : (x1 =

0, x2 > 0) or (x1 > 0, x2 = 0)}. Assumption 2.3 (d) approximately holds in that the set
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{x ∈ R2 : x1 > 0, x2 > 0} is arbitrarily well approximated by a set that satisfies the

differentiability condition.

Example 2.4 (Policy Eligibility Rules). Similar to our empirical application about hos-

pital funding, Medicaid and other welfare policies often decide who are eligible based on

algorithmic rules (Currie and Gruber, 1996; Brown, Kowalski and Lurie, 2020).33 Using our

notation, the state government determines whether each individual i is eligible (Zi = 1) or

not (Zi = 0) for Medicare. The state government’s eligibility rule AMedicaid maps individual

characteristics Xi (e.g. income, family composition) into an eligibility decision ZMedicare
i . A

similar procedure also applies to bankruptcy laws (Mahoney, 2015). These policy eligibility

rules produce quasi-experimental variation as in Example 2.3.

Example 2.5 (Mechanism Design: Matching and Auction). Centralized economic mech-

anisms such as matching and auction are also suitable examples, as summarized below

(Abdulkadiroğlu et al., 2017, 2022; Abdulkadiroğlu, 2013; Kawai et al., 2022; Narita, 2020,

2021):

Matching (e.g., School Choice) Auction

i Student Bidder

Xi Preference/Priority/Tie-breaker Bid

Zi
Whether student i is

assigned treatment school

Whether bidder i

wins the good

Di

Whether student i

attends treatment school
Same as Zi

Yi
Student i’s

future test score

Bidder i’s future

economic performance

In mechanism design and other algorithms with capacity constraints, the treatment rec-

ommendation for individual i may depend not only on Xi but also on the characteristics

of others. These interactive situations can be accommodated by our framework if we con-

33. These papers estimate the effect of Medicaid eligibility by exploiting variation in the eligibility rule
across states and over time (simulated instrumental variable method). In contrast, our method exploits local
variation in the eligibility status across different individuals given a fixed eligibility rule.
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sider the following large market setting.34 Suppose that there is a continuum of individuals

i ∈ [0, 1] and that the recommendation probability for individual i with covariate Xi is

determined by a function M as follows:

Pr(Zi = 1|Xi;FX−i) = M(Xi;FX−i).

Here FX−i = Pr({j ∈ [0, 1] \ {i} : Xj ≤ x}) is the distribution of X among all individuals

j ∈ [0, 1] \ {i}. The function M : Rp × F → [0, 1], where F is a set of distributions on Rp,

gives the recommendation probability for each individual in the market. With a continuum

of individuals, for any i ∈ [0, 1], FX−i is the same as the distribution of X in the whole

market, denoted by FX . Therefore, the data generated by the mechanism M are equivalent

to the data generated by the algorithm A : Rp → [0, 1] such that A(x) ≡ M(x;FX) for all

x ∈ Rp. Our framework is applicable to this large-market interactive setting.

The above discussions can be summarized as follows.

Corollary 2.4. In all the above examples, there exists x ∈ int(X ) such that pA(x) ∈ (0, 1).

Therefore, a causal effect is identified under Assumptions 2.1 and 2.2.

2.8 Conclusion

As algorithmic decisions become the new norm, the world becomes a mountain of natural

experiments and instruments. We develop a general method to use these algorithm-produced

instruments to identify and estimate causal treatment effects. Our analysis of the CARES

Act hospital relief funding uses the proposed method to find that relief funding has little

effect on COVID-19-related hospital activities. OLS or uncontrolled 2SLS estimates, by

contrast, show considerably larger and more significant effects. The large estimates appear

to be an artifact of selection bias; relief funding just went to hospitals with more COVID-19

patients, without helping hospitals accommodate additional patients.

34. The approach proposed by Borusyak and Hull (2020) is applicable to finite-sample settings if the treat-
ment recommendation probability, which may depend on all individuals’ characteristics, is nondegenerate
for multiple individuals.
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Our analysis provides a few implications for policy and management practices of decision-

making algorithms. It is important to record the implementation of algorithms in a repli-

cable, simulatable way, including what input variables Xi are used to make algorithmic

recommendation Zi. Another key lesson is the importance of recording an algorithm’s rec-

ommendation Zi even if they are superseded by a human decision Di. These data retention

efforts would go a long way to exploit the full potential of algorithms as natural experiments.

An important topic for future research is estimation and inference details, such as data-

driven bandwidth selection. This work needs to extend Imbens and Kalyanaraman (2012)

and Calonico, Cattaneo and Titiunik (2014)’s bandwidth selection methods in the univariate

RDD to our setting.35 Inference on treatment effects in our framework relies on conventional

large sample reasoning. It seems natural to additionally consider permutation or randomiza-

tion inference as in Imbens and Rosenbaum (2005). It will also be challenging but interesting

to develop finite-sample optimal estimation and inference strategies such as those recently

introduced by Armstrong and Kolesár (2018, 2021) and Imbens and Wager (2019). Finally,

we look forward to empirical applications of our method in a variety of business, policy, and

scientific domains.

Appendices

2.A Extensions and Discussions

2.A.1 Existence of the Approximate Propensity Score

Proposition 2.1 assumes that APS exists, but is it fair to assume so? In general, APS may

fail to exist. The following figure shows such an example.

35. For univariate RDDs, Imbens and Kalyanaraman (2012) and Calonico et al. (2014) estimate the
bandwidth that minimizes the asymptotic mean squared error (AMSE). It is not straightforward to estimate
the AMSE-optimal bandwidth in our setting with many running variables and complex IV assignment, since
it requires nonparametric estimation of functions on the multidimensional covariate space such as conditional
mean functions, their derivatives, the curvature of the RDD boundary, etc.
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In this example, Xi is two dimensional, and

A(x) =


1 if 3(1

2)k−1 < ‖x‖ ≤ 4(1
2)k−1 for some k = 1, 2, · · ·

0 if 2(1
2)k−1 < ‖x‖ ≤ 3(1

2)k−1 for some k = 1, 2, · · · .

It is shown that

pA(0; δ) =


7
12 if δ = 4(1

2)k−1 for some k = 1, 2, · · ·

7
27 if δ = 3(1

2)k−1 for some k = 1, 2, · · · .

Therefore, limδ→0 p
A(0; δ) does not exist.

Nevertheless, APS exists for almost every x, as shown in the following proposition.

Proposition 2.A.1. pA(x) exists and is equal to A(x) for almost every x ∈ X (with respect

to the Lebesgue measure).

Proof. See Appendix 2.C.5.

Does APS exist at a specific point x? What is the value of APS at x if it is not equal to

A(x)? We show that APS exists and is of a particular form for most covariate points and

typical algorithms. For each x ∈ X and each q ∈ Supp(A(Xi)), define

Ux,q ≡ {u ∈ B(0, 1) : lim
δ→0

A(x+ δu) = q}.
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Ux,q is the set of vectors in B(0, 1) such that the value of A approaches q as we approach x

from the direction of the vector. With this notation, we obtain a sufficient condition for the

existence of APS at a point x.

Proposition 2.A.2. Take any x ∈ X . If there exists a countable set Q ⊂ Supp(A(Xi))

such that Lp(∪q∈QUx,q) = Lp(B(0, 1)) and Ux,q is Lp-measurable for all q ∈ Q, then pA(x)

exists and is given by

pA(x) =

∑
q∈Q qLp(Ux,q)
Lp(B(0, 1))

.

Proof. See Appendix 2.C.6.

If almost every point in B(0, 1) is contained by one of countably many Ux,q’s, there-

fore, APS exists and is equal to the weighted average of the values of q with the weight

proportional to the hypervolume of Ux,q. This result implies that APS exists in practically

important cases.

Corollary 2.A.1.

1. (Continuity points) If A is continuous at x ∈ X , then pA(x) exists and pA(x) = A(x).

2. (Interior points) Let Xq = {x ∈ X : A(x) = q} for some q ∈ [0, 1]. Then, for any

interior point x ∈ int(Xq), pA(x) exists and pA(x) = q.

3. (Smooth boundary points) Suppose that {x ∈ X : A(x) = q1} = {x ∈ X : f(x) ≥ 0}

and {x ∈ X : A(x) = q2} = {x ∈ X : f(x) < 0} for some q1, q2 ∈ [0, 1], where

f : Rp → R. Let x ∈ X be a boundary point such that f(x) = 0, and suppose that f is

continuously differentiable in a neighborhood of x with ∇f(x) 6= 0. In this case, pA(x)

exists and pA(x) = 1
2(q1 + q2).

4. (Intersection points under CART and random forests) Let p = 2, and suppose that

{x ∈ X : A(x) = q1} = {(x1, x2)′ ∈ X : x1 ≤ 0 or x2 ≤ 0}, {x ∈ X : A(x) = q2} =

{(x1, x2)′ ∈ X : x1 > 0, x2 > 0}, and 0 = (0, 0)′ ∈ X . This is an example in which

tree-based algorithms such as Classification And Regression Tree (CART) and random

forests are used to create A. In this case, pA(0) exists and pA(0) = 3
4q1 + 1

4q2.
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Proof. See Appendix 2.C.7.

2.A.2 Discrete Covariates

In this section, we provide the definition of APS and identification and asymptotic normality

results when Xi includes discrete covariates. Suppose that Xi = (Xdi, Xci), where Xdi ∈ Rpd

is a vector of discrete covariates, and Xci ∈ Rpc is a vector of continuous covariates. Let

Xd denote the support of Xdi and be assumed to be finite. We also assume that Xci

is continuously distributed conditional on Xdi, and let Xc(xd) denote the support of Xci

conditional on Xdi = xd for each xd ∈ Xd. Let Xc,0(xd) = {xc ∈ Xc(xd) : A(xd, xc) = 0} and

Xc,1(xd) = {xc ∈ Xc(xd) : A(xd, xc) = 1}.

Define APS as follows: for each x = (xd, xc) ∈ X ,

pA(x; δ) ≡

∫
B(xc,δ)

A(xd, x
∗
c)dx

∗
c∫

B(xc,δ)
dx∗c

,

pA(x) ≡ lim
δ→0

pA(x; δ),

where B(xc, δ) = {x∗c ∈ Rpc : ‖xc − x∗c‖ ≤ δ} is the δ-ball around xc ∈ Rpc . In other words,

we take the average of the A(xd, x
∗
c) values when x∗c is uniformly distributed on B(xc, δ)

holding xd fixed, and let δ → 0. Below, we assume that Assumptions 2.1, 2.2, 2.3 and 2.4

hold conditional on Xdi.

Assumption 2.A.1 (Almost Everywhere Continuity of A).

(a) For every xd ∈ Xd, A(xd, ·) is continuous almost everywhere with respect to the

Lebesgue measure Lpc .

(b) For every xd ∈ Xd, Lpc(Xc,k(xd)) = Lpc(int(Xc,k(xd))) for k = 0, 1.

2.A.2.1 Identification

Assumption 2.A.2 (Local Mean Continuity). For every xd ∈ Xd and z ∈ {0, 1}, the condi-

tional expectation functions E[Yzi|Xi = (xd, xc)] and E[Di(z)|Xi = (xd, xc)] are continuous

in xc at any point xc ∈ Xc(xd) such that pA(xd, xc) ∈ (0, 1) and A(xd, xc) ∈ {0, 1}.
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Let intc(X ) = {(xd, xc) ∈ X : xc ∈ int(Xc(xd))}. We say that a set S ⊂ Rp is open

relative to X if there exists an open set U ⊂ Rp such that S = U ∩X . For a set S ⊂ Rp, let

X Sd = {xd ∈ Xd : (xd, xc) ∈ S for some xc ∈ Rpc} and X Sc (xd) = {xc ∈ Xc : (xd, xc) ∈ S} for

each xd ∈ X Sd .

Proposition 2.A.3. Under Assumptions 2.A.1 and 2.A.2:

(a) E[Y1i − Y0i|Xi = x] and E[Di(1)−Di(0)|Xi = x] are identified for every x ∈ intc(X )

such that pA(x) ∈ (0, 1).

(b) Let S be any subset of X open relative to X such that pA(x) exists for all x ∈ S. Then

either E[Y1i − Y0i|Xi ∈ S] or E[Di(1) − Di(0)|Xi ∈ S], or both are identified only if

pA(x) ∈ (0, 1) for almost every xc ∈ X Sc (xd) for every xd ∈ X Sd .

Proof. See Appendix 2.C.8.

2.A.2.2 Estimation

For each xd ∈ Xd, let Ω∗(xd) = {xc ∈ Rpc : A(xd, xc) = 1}. Also, let X ∗d = {xd ∈ Xd :

Var(A(Xi)|Xdi = xd) > 0}, and let fXc|Xd denote the probability density function of Xci

conditional on Xdi. In addition, for each xd ∈ Xd, let

C∗(xd) = {xc ∈ Rpc : A(xd, ·) is continuously differentiable at xc},

and let D∗(xd) = Rpc \ C∗(xd).

Assumption 2.A.3.

(a) (Finite Moments) E[Y 4
i ] <∞.

(b) (Nonzero First Stage)
∫
X p

A(x)(1 − pA(x))E[Di(1) − Di(0)|Xi = x]fX(x)dµ(x) 6= 0,

where µ is the Lebesgue measure Lp when Pr(A(Xi) ∈ (0, 1)) > 0 and is the (p − 1)-

dimensional Hausdorff measure Hp−1 when Pr(A(Xi) ∈ (0, 1)) = 0.

If Pr(A(Xi) ∈ (0, 1)) = 0, then the following conditions (c)–(f) hold.

(c) (Nonzero Variance) X ∗d 6= ∅.
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(d) (C2 Boundary of Ω∗(xd)) For each xd ∈ X ∗d , there exists a partition

{Ω∗1(xd), ...,Ω
∗
M (xd)} of Ω∗(xd) such that

(i) dist(Ω∗m(xd),Ω
∗
m′(xd)) > 0 for any m,m′ ∈ {1, ...,M} such that m 6= m′;

(ii) Ω∗m(xd) is nonempty, bounded, open, connected and twice continuously differen-

tiable for each m ∈ {1, ...,M}.

(e) (Regularity of Deterministic A) For each xd ∈ X ∗d , the following holds.

(i) Hpc−1(∂Ω∗(xd)) <∞, and
∫
∂Ω∗(xd) fXc|Xd(xc|xd)dH

pc−1(xc) > 0.

(ii) There exists δ > 0 such that A(xd, xc) = 0 for almost every xc ∈ N(Xc(xd), δ) \

Ω∗(xd).

(f) (Conditional Means and Density near ∂Ω∗(xd)) For each xd ∈ X ∗d , there exists δ > 0

such that

(i) E[Y1i|Xi = (xd, ·)], E[Y0i|Xi = (xd, ·)], E[Di(1)|Xi = (xd, ·)], E[Di(0)|Xi =

(xd, ·)] and fXc|Xd(·|xd) are continuously differentiable and have bounded partial

derivatives on N(∂Ω∗(xd), δ);

(ii) E[Y 2
1i|Xi = (xd, ·)], E[Y 2

0i|Xi = (xd, ·)], E[Y1iDi(1)|Xi = (xd, ·)] and

E[Y0iDi(0)|Xi = (xd, ·)] are continuous on N(∂Ω∗(xd), δ);

(iii) E[Y 4
i |Xi = (xd, ·)] is bounded on N(∂Ω∗(xd), δ).

Assumption 2.A.4. If Pr(A(Xi) ∈ (0, 1)) > 0, then the following conditions (a)–(c) hold.

(a) (Probability of Neighborhood of D∗(xd)) For each xd ∈ X ∗d , Pr(Xi ∈ N(D∗(xd), δ)) =

O(δ).

(b) (Bounded Partial Derivatives of A) For each xd ∈ X ∗d , the partial derivatives of A(xd, ·)

are bounded on C∗(xd).

(c) (Bounded Conditional Mean) For each xd ∈ X ∗d , E[Yi|Xi = (xd, ·)] is bounded on

Xc(xd).
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Theorem 2.A.1. Suppose that Assumptions 2.A.1 and 2.A.3 hold and δn → 0, nδn → ∞

and Sn →∞ as n→∞. Then the 2SLS estimators β̂1 and β̂s1 converge in probability to

β1 ≡ lim
δ→0

E[ωi(δ)(Yi(1)− Yi(0))],

where

ωi(δ) =
pA(Xi; δ)(1− pA(Xi; δ))(Di(1)−Di(0))

E[pA(Xi; δ)(1− pA(Xi; δ))(Di(1)−Di(0))]
.

Suppose, in addition, that Assumptions 2.A.4 and 2.5 hold and nδ2
n → 0 as n→∞. Then

σ̂−1
n (β̂1 − β1)

d−→ N (0, 1),

(σ̂sn)−1(β̂s1 − β1)
d−→ N (0, 1).

Proof. See Appendix 2.C.9.

As in the case in which all covariates are continuous, the probability limit of the 2SLS

estimators has more specific expressions depending on whether Pr(A(Xi) ∈ (0, 1)) > 0 or

not. If Pr(A(Xi) ∈ (0, 1)) > 0,

plim β̂1 = plim β̂s1 =
E[A(Xi)(1−A(Xi))(Di(1)−Di(0))(Yi(1)− Yi(0))]

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]
.

If Pr(A(Xi) ∈ (0, 1)) = 0,

plim β̂1

= plim β̂s1

=

∑
xd∈X∗

d
Pr(Xdi = xd)

∫
∂Ω∗(xd)

E[(Di(1)−Di(0))(Yi(1)− Yi(0))|Xi = x]fXc|Xd
(xc|xd)dHpc−1(xc)∑

xd∈X∗
d

Pr(Xdi = xd)
∫
∂Ω∗(xd)

E[Di(1)−Di(0)|Xi = x]fXc|Xd
(xc|xd)dHpc−1(xc)

.

2.A.3 A Sufficient Condition for Assumption 2.4 (a)

We provide a sufficient condition for Assumption 2.4 (a).

Assumption 2.A.5.
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(a) (Twice Continuous Differentiability of D∗) There exist C∗1 , ..., C
∗
M ⊂ Rp such that

(i) ∂(C̃∗) = D∗, where C̃∗ ≡ ∪Mm=1C
∗
m;

(ii) dist(C∗m, C
∗
m′) > 0 for any m,m′ ∈ {1, ...,M} such that m 6= m′;

(iii) C∗m is nonempty, bounded, open, connected and twice continuously differentiable

for each m ∈ {1, ...,M}.

(b) (Regularity of D∗) Hp−1(D∗) <∞.

(c) (Bounded Density near D∗) There exists δ > 0 such that fX is bounded on N(D∗, δ).

The key condition is the twice continuous differentiability of D∗. Under Assumption

2.A.5 (a), by Lemma 2.B.4 in Appendix 2.B.3 and with change of variables v = λ
δ , for any

sufficiently small δ > 0,

Pr(Xi ∈ N(D∗, δ)) =

∫ δ

−δ

∫
D∗
fX(u+ λνC̃∗(u))JD

∗
p−1ψC̃∗(u, λ)dHp−1(u)dλ

= δ

∫ 1

−1

∫
D∗
fX(u+ δvνC̃∗(u))JD

∗
p−1ψC̃∗(u, δv)dHp−1(u)dv.

(See Appendix 2.B for the notation.) If fX is bounded on N(D∗, δ) and Hp−1(D∗) < ∞,

the right-hand side is O(δ).

2.B Notation and Lemmas

2.B.1 Basic Notations

For a scalar-valued differentiable function f : S ⊂ Rn → R, let ∇f : S → Rn be a gradient

of f : for every x ∈ S,

∇f(x) =

(
∂f(x)

∂x1
, · · · , ∂f(x)

∂xn

)′
.

Also, when the second-order partial derivatives of f exist, let D2f(x) be the Hessian matrix:

D2f(x) =


∂2f(x)
∂x2

1
· · · ∂2f(x)

∂x1∂xn
...

. . .
...

∂2f(x)
∂xn∂x1

· · · ∂2f(x)
∂x2
n


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for each x ∈ S.

Let f : S ⊂ Rm → Rn be a function such that its first-order partial derivatives exist.

For each x ∈ S, let Jf(x) be the Jacobian matrix of f at x:

Jf(x) =


∂f1(x)
∂x1

· · · ∂f1(x)
∂xm

...
. . .

...
∂fn(x)
∂x1

· · · ∂fn(x)
∂xm

 .

For a positive integer n, let In denote the n× n identity matrix.

2.B.2 Differential Geometry

We provide some concepts and facts from differential geometry of twice continuously dif-

ferentiable sets, following Crasta and Malusa (2007). Let S ⊂ Rp be a twice continuously

differentiable set. For each x ∈ ∂S, we denote by νS(x) ∈ Rp the inward unit normal vector

of ∂S at x, that is, the unit vector orthogonal to all vectors in the tangent space of ∂S at x

that points toward the inside of S. For a set S ⊂ Rp, let dsS : Rp → R be the signed distance

function of S, defined by

dsS(x) =


d(x, ∂S) if x ∈ cl(S)

−d(x, ∂S) if x ∈ Rp \ cl(S),

where d(x,B) = infy∈B ‖y − x‖ for any x ∈ Rp for a set B ⊂ Rp. Note that we can write

N(∂S, δ) = {x ∈ Rp : −δ < dsS(x) < δ} for δ > 0. Lastly, let Π∂S(x) = {y ∈ ∂S : ‖y − x‖ =

d(x, ∂S)} be the set of projections of x on ∂S.

Lemma 2.B.1 (Corollary of Theorem 4.16, Crasta and Malusa (2007)). Let S ⊂ Rp be

nonempty, bounded, open, connected and twice continuously differentiable. Then the function

dsS is twice continuously differentiable on N(∂S, µ) for some µ > 0. In addition, for every

x0 ∈ ∂S, Π∂S(x0 + tνS(x0)) = {x0} for every t ∈ (−µ, µ). Furthermore, for every x ∈

N(∂S, µ), Π∂S(x) is a singleton, ∇dsS(x) = νS(y) and x = y + dsS(x)νS(y) for y ∈ Π∂S(x),

and ‖∇dsS(x)‖ = 1.
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Proof. We apply results from Crasta and Malusa (2007). Let K = {x ∈ Rp : ‖x‖ ≤ 1}. K

is nonempty, compact, convex subset of Rp with the origin as an interior point. The polar

body of K, defined as K0 = {y ∈ Rp : y · x ≤ 1 for all x ∈ K}, is K itself. The gauge

functions ρK , ρK0 : Rp → [0,∞] of K and K0 are given by

ρK(x) ≡ inf{t ≥ 0 : x ∈ tK} = ‖x‖,

ρK0(x) ≡ inf{t ≥ 0 : x ∈ tK0} = ‖x‖.

Given ρK0 , the Minkowski distance from a set S ⊂ Rp is defined as

δS(x) ≡ inf
y∈S

ρK0(x− y), x ∈ Rp.

Note that we can write

dsS(x) =


δ∂S(x) if x ∈ cl(S)

−δ∂S(x) if x ∈ Rp \ cl(S).

It then follows from Theorem 4.16 of Crasta and Malusa (2007) that dsS is twice continuously

differentiable on N(∂S, µ) for some µ > 0, and for every x0 ∈ ∂S,

∇dsS(x0) =
νS(x0)

ρK(νS(x0))
=

νS(x0)

‖νS(x0)‖
= νS(x0),

where the last equality follows since νS(x0) is a unit vector. It then follows that ‖∇dsS(x0)‖ =

‖νS(x0)‖ = 1 for every x0 ∈ ∂S. Also, it is obvious that, for every x0 ∈ ∂S, Π∂S(x0) =

{x0} and x0 = x0 + dsS(x0)νS(x0), since dsS(x0) = 0. In addition, as stated in the proof

of Theorem 4.16 of Crasta and Malusa (2007), µ is chosen so that (4.7) in Proposition

4.6 of Crasta and Malusa (2007) holds for every x0 ∈ ∂S and every t ∈ (−µ, µ). That

is, Π∂S(x0 + t∇ρK(νS(x0))) = {x0} for every x0 ∈ ∂S and every t ∈ (−µ, µ). Since

∇ρK(νS(x0)) = νS(x0)
‖νS(x0)‖ = νS(x0), Π∂S(x0 + tνS(x0)) = {x0} for every x0 ∈ ∂S and every

t ∈ (−µ, µ).

Furthermore, for every x ∈ N(∂S, µ)\∂S, Π∂S(x) is a singleton as shown in the proof of
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Theorem 4.16 of Crasta and Malusa (2007). Let π∂S(x) be the unique element in Π∂S(x).

By Lemma 4.3 of Crasta and Malusa (2007), for every x ∈ N(∂S, µ) \ ∂S,

∇dsS(x) =
νS(π∂S(x))

ρK(νS(π∂S(x)))
=

νS(π∂S(x))

‖νS(π∂S(x))‖
= νS(π∂S(x)),

where the last equality follows since νS(π∂S(x)) is a unit vector. It then follows that

‖∇dsS(x)‖ = ‖νS(π∂S(x))‖ = 1 for every x ∈ N(∂S, µ) \ ∂S.

Lastly, note that

δ∂S(x) =


dsS(x) if x ∈ N(∂S, µ) ∩ int(S)

−dsS(x) if x ∈ N(∂S, µ) \ cl(S),

and

∇δ∂S(x) =


∇dsS(x) if x ∈ N(∂S, µ) ∩ int(S)

−∇dsS(x) if x ∈ N(∂S, µ) \ cl(S),

so δ∂S(x)∇δ∂S(x) = dsS(x)∇dsS(x) = dsS(x)νS(π∂S(x)) for every x ∈ N(∂S, µ) \ ∂S. By

Proposition 3.3 (i) of Crasta and Malusa (2007), for every x ∈ N(∂S, µ) \ ∂S,

∇ρK(∇δ∂S(x)) =
x− π∂S(x)

δ∂S(x)
,

which implies that

x = π∂S(x) + δ∂S(x)∇ρK(∇δ∂S(x))

= π∂S(x) + δ∂S(x)
∇δ∂S(x)

‖∇δ∂S(x)‖
= π∂S(x) + dsS(x)νS(π∂S(x)).

We say that a set S ⊂ Rn is an m-dimensional C1 submanifold of Rn if for every point

x ∈ S, there exist an open neighborhood V ⊂ Rn of x and a one-to-one continuously

differentiable function φ from an open set U ⊂ Rm to Rn such that the Jacobian matrix
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Jφ(u) is of rank m for all u ∈ U , and φ(U) = V ∩ S.

Lemma 2.B.2. Let S ⊂ Rp be nonempty, bounded, open, connected and twice continuously

differentiable. Then ∂S is a (p− 1)-dimensional C1 submanifold of Rp.

Proof. Fix any x∗ ∈ ∂S. By Lemma 2.B.1, ∇dsS(x∗) is nonzero. Without loss of generality,

let ∂dsS(x∗)
∂xp

6= 0. Let ψ : Rp → Rp be the function such that ψ(x) = (x1, ..., xp−1, d
s
S(x)). ψ

is continuously differentiable, and the Jacobian matrix of ψ at x∗ is given by

Jψ(x∗) =


∂ψ1

∂x1
(x∗) · · · ∂ψ1

∂xp
(x∗)

...
. . .

...
∂ψp
∂x1

(x∗) · · · ∂ψp
∂xp

(x∗)

 =



0

Ip−1
...

0

∂dsS(x∗)
∂x1

· · · ∂dsS(x∗)
∂xp−1

∂dsS(x∗)
∂xp


.

Since ∂dsS(x∗)
∂xp

6= 0, the Jacobian matrix is invertible. By the Inverse Function Theorem,

there exist an open set V containing x∗ and an open set W containing ψ(x∗) such that

ψ : V → W has an inverse function ψ−1 : W → V that is continuously differentiable. We

make V small enough so that ∂dsS(x)
∂xp

6= 0 for every x ∈ V . The Jacobian matrix of ψ−1 is

given by Jψ−1(y) = Jψ(ψ−1(y))−1 for all y ∈W .

Now note that ψ(x) = (x1, ..., xp−1, 0) for all x ∈ V ∩ ∂S by the definition of dsS . Let

U = {(x1, ..., xp−1) ∈ Rp−1 : x ∈ V ∩ ∂S} and φ : U → Rp be a function such that

φ(u) = ψ−1((u, 0)) for all u ∈ U . Below we verify that φ is one-to-one and continously

differentiable, that Jφ(u) is of rank p− 1 for all u ∈ U , that φ(U) = V ∩ ∂S, and that U is

open.

First, φ is one-to-one, since ψ−1 is one-to-one, and (u, 0) 6= (u′, 0) if u 6= u′. Second,

φ is continuously differentiable, since ψ−1 is so. The Jacobian matrix of φ at u ∈ U is by

definition

Jφ(u) =


∂ψ−1

1
∂y1

((u, 0)) · · · ∂ψ−1
1

∂yp−1
((u, 0))

...
. . .

...
∂ψ‘

p−1

∂y1
((u, 0)) · · · ∂ψ−1

p

∂yp−1
((u, 0))

 .

Note that this is the left p× (p− 1) submatrix of Jψ−1((u, 0)). Since Jψ−1((u, 0)) has full
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rank, Jφ(u) is of rank p− 1. Moreover,

φ(U) = {ψ−1((u, 0)) : u ∈ U}

= {ψ−1((x1, ..., xp−1, 0)) : x ∈ V ∩ ∂S}

= {ψ−1(ψ(x)) : x ∈ V ∩ ∂S}

= V ∩ ∂S.

Lastly, we show that U is open. Pick any ū ∈ U . Then, there exists x̄p ∈ R such that

(ū, x̄p) ∈ V ∩ ∂S. As (ū, x̄p) ∈ V ∩ ∂S, dsS((ū, x̄p)) = 0. Since ∂dsS((ū,x̄p))
∂xp

6= 0, it follows by

the Implicit Function Theorem that there exist an open set S ⊂ Rp−1 containing ū and a

continuously differentiable function g : S → R such that g(ū) = x̄p and dsS(u, g(u)) = 0 for

all u ∈ S. Since g is continuous, (ū, g(ū)) ∈ V and V is open, there exists an open set S′ ⊂ S

containing ū such that (u, g(u)) ∈ V for all u ∈ S′. By the definition of dsS , d
s
S(x) = 0 if

and only if x ∈ ∂S. Therefore, if u ∈ S′, (u, g(u)) must be contained by ∂S, for otherwise

dsS(u, g(u)) 6= 0, which is a contradiction. Thus, (u, g(u)) ∈ V ∩ ∂S and hence u ∈ U for all

u ∈ S′. This implies that S′ is an open subset of U containing ū, which proves that U is

open.

2.B.3 Geometric Measure Theory

We provide some concepts and facts from geometric measure theory, following Krantz and

Parks (2008). Recall that for a function f : S ⊂ Rm → Rn and a point x ∈ S at which f is

differentiable, Jf(x) denotes the Jacobian matrix of f at x.

Lemma 2.B.3 (Coarea Formula, Lemma 5.1.4 and Corollary 5.2.6 of Krantz and Parks

(2008)). If f : Rm → Rn is a Lipschitz function and m ≥ n, then

∫
S
g(x)Jnf(x)dLm(x) =

∫
Rn

∫
{x′∈S:f(x′)=y}

g(x)dHm−n(x)dLn(y)

for every Lebesgue measurable subset S of Rm and every Lm-measurable function g : S → R,
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where for each x ∈ Rm at which f is differentiable,

Jnf(x) =
√

det((Jf(x))(Jf(x))′).

Let S be an m-dimensional C1 submanifold of Rn. Let x ∈ S and let φ : U ⊂ Rm → Rn

be as in the definition of m-dimensional C1 submanifold. We denote by TS(x) the tangent

space of S at x, {Jφ(u)v : v ∈ Rm}, where u = φ−1(x).

Lemma 2.B.4 (Area Formula, Lemma 5.3.5 and Theorem 5.3.7 of Krantz and Parks

(2008)). Suppose m ≤ ν and f : Rn → Rν is Lipschitz. If S is an m-dimensional C1

submanifold of Rn, then

∫
S
g(x)JSmf(x)dHm(x) =

∫
Rν

∑
x∈S:f(x)=y

g(x)dHm(y)

for every Hm-measurable function g : S → R, where for each x ∈ Rn at which f is differen-

tiable,

JSmf(x) =
Hm({Jf(x)y : y ∈ P})

Hm(P )

for an arbitrary m-dimensional parallelepiped P contained in TS(x).

Let S ⊂ Rp. For each x ∈ Rp at which dsS is differentiable and for each λ ∈ R, let

ψS(x, λ) = x+ λ∇dsS(x).

Lemma 2.B.5. Let Ω ⊂ Rp, and suppose that there exists a partition {Ω1, ...,ΩM} of Ω

such that

(i) dist(Ωm,Ωm′) > 0 for any m,m′ ∈ {1, ...,M} such that m 6= m′;

(ii) Ωm is nonempty, bounded, open, connected and twice continuously differentiable for

each m ∈ {1, ...,M}.

Then there exists µ > 0 such that dsΩ is twice continuously differentiable on N(∂Ω, µ) and

that ∫
N(∂Ω,δ)

g(x)dx =

∫ δ

−δ

∫
∂Ω
g(u+ λνΩ(u))J∂Ω

p−1ψΩ(u, λ)dHp−1(u)dλ
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for every δ ∈ (0, µ) and every function g : Rp → R that is integrable on N(∂Ω, δ), where

for each fixed λ ∈ (−µ, µ), J∂Ω
p−1ψΩ(·, λ) is calculated by applying the operation J∂Ω

p−1 to

the function ψΩ(·, λ). Futhermore, J∂Ω
p−1ψΩ(x, ·) is continuously differentiable in λ and

J∂Ω
p−1ψΩ(x, 0) = 1 for every x ∈ ∂Ω, and J∂Ω

p−1ψΩ(·, ·) and
∂J∂Ω
p−1ψΩ(·,·)
∂λ are bounded on

∂Ω× (−µ, µ).

Proof. Let µ̄ = 1
2 minm,m′∈{1,...,M},m 6=m′ dist(Ωm,Ωm′) so that {N(∂Ωm, µ̄)}Mm=1 is a par-

tition of N(∂Ω, µ̄). Note that for every m ∈ {1, ...,M}, dsΩ(x) = dsΩm(x) for every

x ∈ N(∂Ωm, µ̄). By Lemma 2.B.1, for every m ∈ {1, ...,M}, there exists µ̄m > 0 such that

dsΩm is twice continuously differentiable onN(∂Ωm, µ̄m). Letting µ ∈ (0,min{µ̄, µ̄1, ..., µ̄M}),

we have that dsΩ is twice continuously differentiable on N(∂Ω, µ). This implies that dsΩ is

Lipschitz on N(∂Ω, µ). For every δ ∈ (0, µ) and every function g : Rp → R that is integrable

on N(∂Ω, δ),

∫
N(∂Ω,δ)

g(x)dx =

∫
{x′∈Rp:dsΩ(x′)∈(−δ,δ)}

g(x)
√

det(‖∇dsΩ(x)‖)dx

=

∫
{x′∈Rp:dsΩ(x′)∈(−δ,δ)}

g(x)
√

det(∇dsΩ(x)′∇dsΩ(x))dx

=

∫
{x′∈Rp:dsΩ(x′)∈(−δ,δ)}

g(x)
√

det((JdsΩ(x))(JdsΩ(x))′)dx

=

∫
R

∫
{x′∈Rp:dsΩ(x′)∈(−δ,δ),dsΩ(x′)=λ}

g(x)dHp−1(x)dλ

=

∫ δ

−δ

∫
{x′∈Rp:dsΩ(x′)=λ}

g(x)dHp−1(x)dλ, (2.11)

where the first equality follows since ‖∇dsΩ(x)‖ = 1 for every x ∈ N(∂Ω, δ) by Lemma 2.B.1,

the third equality follows from the definition of the Jacobian matrix, and the fourth equality

follows from Lemma 2.B.3.

Let Γ(λ) = {x ∈ Rp : dsΩ(x) = λ} for each λ ∈ (−µ, µ). Since ∇dsΩ is differentiable on

N(∂Ω, µ), ψΩ(x, λ) is defined on N(∂Ω, µ)×R. We show that {ψΩ(x0, λ) : x0 ∈ ∂Ω} ⊂ Γ(λ)

for every λ ∈ (−µ, µ). By Lemma 2.B.1, for every x0 ∈ ∂Ω, ψΩ(x0, λ) = x0 + λνΩ(x0) and

Π∂Ω(ψΩ(x0, λ)) = Π∂Ω(x0 + λνΩ(x0)) = {x0}.
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Hence,

d(ψΩ(x0, λ), ∂Ω) = ‖ψΩ(x0, λ)− x0‖ = ‖λνΩ(x0)‖ = |λ|.

Since νΩ(x0) is an inward normal vector, ψΩ(x0, λ) ∈ cl(Ω) if 0 ≤ λ < µ, and ψΩ(x0, λ) ∈

Rp \ cl(Ω) if −µ < λ < 0. It follows that

dsΩ(ψΩ(x0, λ)) =


|λ| if 0 ≤ λ < µ

−|λ| if µ < λ < 0

= λ,

so {ψΩ(x0, λ) : x0 ∈ ∂Ω} ⊂ Γ(λ). It also holds that Γ(λ) ⊂ {ψΩ(x0, λ) : x0 ∈ ∂Ω}, since by

Lemma 2.B.1, for every x ∈ Γ(λ),

ψΩ(π∂Ω(x), λ) = π∂Ω(x) + λ∇dsΩ(π∂Ω(x)) = π∂Ω(x) + dsΩ(x)νΩ(π∂Ω(x)) = x,

where π∂Ω(x) is the unique element in Π∂Ω(x). Thus, {ψΩ(x0, λ) : x0 ∈ ∂Ω} = Γ(λ).

Now note that {∂Ωm}Mm=1 is a partition of ∂Ω, since dist(Ωm,Ωm′) > 0 for any m,m′ ∈

{1, ...,M} such thatm 6= m′. By Lemma 2.B.2, ∂Ωm is a (p−1)-dimensional C1 submanifold

of Rp for every m ∈ {1, ...,M}, and hence ∂Ω is a (p−1)-dimensional C1 submanifold of Rp.

Furthermore, since ∇dsΩ is continuously differentiable on N(∂Ω, µ), ψΩ(·, λ) is continuously

differentiable on N(∂Ω, µ), which implies that ψΩ(·, λ) is Lipschitz on N(∂Ω, µ) for every

λ ∈ R. Applying Lemma 2.B.4, we have that for every λ ∈ (−µ, µ),

∫
∂Ω
g(u+ λνΩ(u))J∂Ω

p−1ψΩ(u, λ)dHp−1(u) =

∫
∂Ω
g(ψΩ(u, λ))J∂Ω

p−1ψΩ(u, λ)dHp−1(u)

=

∫
Rp

∑
u∈∂Ω:ψΩ(u,λ)=x

g(ψΩ(u, λ))dHp−1(x).

(2.12)

If x /∈ {ψΩ(u, λ) : u ∈ ∂Ω}, {u ∈ ∂Ω : ψΩ(u, λ) = x} = ∅. If x ∈ {ψΩ(u, λ) : u ∈ ∂Ω},

there exists u ∈ ∂Ω such that x = ψΩ(u, λ). Since Π∂Ω(x) = Π∂Ω(u+ λ∇dsΩ(u)) = Π∂Ω(u+
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λνΩ(u)) = {u} by Lemma 2.B.1, such u is unique, and hence {u ∈ ∂Ω : ψΩ(u, λ) = x} is a

singleton. It follow that

∫
Rp

∑
u∈∂Ω:ψΩ(u,λ)=x

g(ψΩ(u, λ))dHp−1(x) =

∫
{ψΩ(u,λ):u∈∂Ω}

g(x)dHp−1(x)

=

∫
Γ(λ)

g(x)dHp−1(x), (2.13)

where the last equality holds since {ψΩ(u, λ) : u ∈ ∂Ω} = Γ(λ). Combining (2.11), (2.12)

and (2.13), we obtain

∫
N(∂Ω,δ)

g(x)dx =

∫ δ

−δ

∫
∂Ω
g(u+ λνΩ(u))J∂Ω

p−1ψΩ(u, λ)dHp−1(u)dλ.

We next show that J∂Ω
p−1ψΩ(x, ·) is continuously differentiable in λ and J∂Ω

p−1ψΩ(x, 0) = 1

for every x ∈ ∂Ω. Fix an x ∈ ∂Ω, and let VΩ(x) be an arbitrary p × (p − 1) matrix whose

columns v1(x), ..., vp−1(x) ∈ Rp form an orthonormal basis of T∂Ω(x). Let P (x) ⊂ T∂Ω(x)

be a parallelepiped determined by v1(x), ..., vp−1(x), that is, let P (x) = {
∑p−1

k=1 ckvk(x) :

0 ≤ ck ≤ 1 for k = 1, ..., p− 1}. Since v1(x), ..., vp−1(x) are linearly independent, P (x) is a

(p− 1)-dimensional parallelepiped. It follows that for each fixed λ ∈ R,

{JψΩ(x, λ)y : y ∈ P (x)} = {JψΩ(x, λ)

p−1∑
k=1

ckvk(x) : 0 ≤ ck ≤ 1 for k = 1, ..., p− 1}

= {
p−1∑
k=1

ckJψΩ(x, λ)vk(x) : 0 ≤ ck ≤ 1 for k = 1, ..., p− 1}

= {
p−1∑
k=1

ckwk(x, λ) : 0 ≤ ck ≤ 1 for k = 1, ..., p− 1},

where wk(x, λ) = JψΩ(x, λ)vk(x) for k = 1, ..., p − 1. Since JψΩ(x, λ)vk(x) is the k-th

column of JψΩ(x, λ)VΩ(x), {JψΩ(x, λ)y : y ∈ P (x)} is the parallelepiped determined by the
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columns of JψΩ(x, λ)VΩ(x). By Proposition 5.1.2 of Krantz and Parks (2008), we have that

J∂Ω
p−1ψΩ(x, λ) =

Hp−1({
∑p−1

k=1 ckwk(x, λ) : 0 ≤ ck ≤ 1 for k = 1, ..., p− 1})
Hp−1(P (x))

=

√
det((JψΩ(x, λ)VΩ(x))′(JψΩ(x, λ)VΩ(x)))√

det(VΩ(x)′VΩ(x))

=

√
det((VΩ(x) + λD2dsΩ(x)VΩ(x))′(VΩ(x) + λD2dsΩ(x)VΩ(x)))√

det(Ip−1)

=
√

det(VΩ(x)′VΩ(x) + 2VΩ(x)′λD2dsΩ(x)VΩ(x) + VΩ(x)′(λD2dsΩ(x))2VΩ(x))

=
√

det(Ip−1 + λVΩ(x)′(2D2dsΩ(x) + λ(D2dsΩ(x))2)VΩ(x)))

=
√

det(Ip + λVΩ(x)VΩ(x)′(2D2dsΩ(x) + λ(D2dsΩ(x))2)),

where we use the fact that VΩ(x)′VΩ(x) = Ip−1 and the fact that det(Im +AB) = det(In +

BA) for an m × n matrix A and an n ×m matrix B (the Weinstein-Aronszajn identity).

For every x ∈ ∂Ω, J∂Ω
p−1ψΩ(x, ·) is continuously differentiable in λ, and J∂Ω

p−1ψΩ(x, 0) =√
det(Ip) = 1.

Lastly, we show that J∂Ω
p−1ψΩ(·, ·) and

∂J∂Ω
p−1ψΩ(·,·)
∂λ are bounded on ∂Ω × (−µ∗, µ∗) for

some µ∗ ∈ (0, µ). Let f : R× Rp×(p−1) × Rp×p → R be a function such that

f(λ, V,D) = det(Ip + 2λV V ′D + λ2V V ′D2).

Note that J∂Ω
p−1ψΩ(x, λ) =

√
f(λ, VΩ(x), D2dsΩ(x)).

Let S = {(V,D2dsΩ(x)) ∈ Rp×(p−1)×Rp×p : ‖vk‖ = 1 for k = 1, ..., p− 1, x ∈ ∂Ω}, where

vk denotes the kth column of V . Since D2dsΩ(·) is continuous on ∂Ω, and ∂Ω is closed and

bounded, S is closed and bounded. Observe that

∂f(λ, V,D)

∂λ
=
∑
i,j

∂det(Ip + 2λV V ′D + λ2V V ′D2)

∂bij
(2(V V ′D)ij + 2λ(V V ′D2)ij),

where ∂det(B)
∂bij

denotes the partial derivative of the function det : Rp×p → R with respect

to the (i, j) entry of B, which is continuous. Since the right-hand side is continuous in

(λ, V,D), there exists M̄ > 0 such that |∂f(λ,V,D)
∂λ | ≤ M̄ for all (λ, V,D) ∈ [−µ, µ]× S.
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By the mean value theorem, for every (λ, V,D) ∈ [−µ, µ]× S,

f(λ, V,D) = f(0, V,D) +
∂f(λ̃, V,D)

∂λ
λ

∈ [1− M̄ |λ|, 1 + M̄ |λ|],

where λ̃ lies on the line segment connecting 0 and λ and the second line holds since

f(0, V,D) = 1 by construction. Pick µ∗ ∈ (0, µ̄] such that 1 − M̄µ∗ > 0. Since

{(VΩ(x), D2dsΩ(x)) : x ∈ ∂Ω} ⊂ S, it follows that J∂Ω
p−1ψΩ(x, λ) =

√
f(λ, VΩ(x), D2dsΩ(x)) is

bounded on ∂Ω× (−µ∗, µ∗). Moreover, for every (x, λ) ∈ ∂Ω× (−µ∗, µ∗),

∂J∂Ω
p−1ψΩ(x, λ)

∂λ
=

1

2
√
f(λ, VΩ(x), D2dsΩ(x))

∂f(λ, VΩ(x), D2dsΩ(x))

∂λ

∈

(
− M̄

2
√

1− M̄µ∗
,

M̄

2
√

1− M̄µ∗

)
.

Thus,
∂J∂Ω
p−1ψΩ(x,λ)

∂λ is bounded on ∂Ω× (−µ∗, µ∗).

2.B.4 Other Lemmas

Lemma 2.B.6. Let {Vi}∞i=1 be i.i.d. random variables such that E[V 2
i ] <∞. If Assumption

2.1 holds, then for l ≥ 0 and m = 0, 1,

E[Vip
A(Xi; δ)

l1{pA(Xi; δ) ∈ (0, 1)}m]→ E[ViA(Xi)
l1{A(Xi) ∈ (0, 1)}m]

as δ → 0. Moreover, if, in addition, δn → 0 as n→∞, then for l ≥ 0,

1

n

n∑
i=1

Vip
A(Xi; δn)lIi,n

p−→ E[ViA(Xi)
l1{A(Xi) ∈ (0, 1)}]

as n→∞.

Proof. Note that E[ 1
n

∑n
i=1 Vip

A(Xi; δn)lIi,n] = E[Vip
A(Xi; δn)l1{pA(Xi; δn) ∈ (0, 1)}]. We
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show that

E[Vip
A(Xi; δ)

l1{pA(Xi; δ) ∈ (0, 1)}m]→ E[ViA(Xi)
l1{A(Xi) ∈ (0, 1)}m]

for l ≥ 0 and m = 0, 1 as δ → 0, and that

Var(
1

n

n∑
i=1

Vip
A(Xi; δn)lIi,n)→ 0

for l ≥ 0 as n→∞. For the first part, we have

E[Vip
A(Xi; δ)

l1{pA(Xi; δ) ∈ (0, 1)}m] =

∫
X
E[Vi|Xi = x]pA(x; δ)l1{pA(x; δ) ∈ (0, 1)}mfX(x)dx.

Suppose A is continuous at x and A(x) ∈ (0, 1). Then limδ→0 p
A(x; δ) = A(x) by Part 1

of Corollary 2.A.1, and hence pA(x; δ) ∈ (0, 1) for sufficiently small δ > 0. It follows that

1{pA(x; δ) ∈ (0, 1)} → 1 = 1{A(x) ∈ (0, 1)} as δ → 0. Suppose x ∈ int(X0) ∪ int(X1).

Then B(x, δ) ⊂ X0 or B(x, δ) ⊂ X1 for sufficiently small δ > 0 by the fact that int(X0)

and int(X1) are open, and hence 1{pA(x; δ) ∈ (0, 1)} → 0 = 1{A(x) ∈ (0, 1)} as δ → 0.

Therefore, limδ→0 p
A(x; δ) = A(x) and limδ→0 1{pA(x; δ) ∈ (0, 1)} = 1{A(x) ∈ (0, 1)} for

almost every x ∈ X , since A is continuous at x for almost every x ∈ X by Assumption 2.1

(a), and either A(x) ∈ (0, 1) or x ∈ int(X0)∪ int(X1) for almost every x ∈ X by Assumption

2.1 (b). By the Dominated Convergence Theorem,

E[Vip
A(Xi; δ)

l1{pA(Xi; δ) ∈ (0, 1)}m]→
∫
X
E[Vi|Xi = x]A(x)l1{A(x) ∈ (0, 1)}mfX(x)dx

= E[ViA(Xi)
l1{A(Xi) ∈ (0, 1)}m]

as δ → 0. As for variance,

Var(
1

n

n∑
i=1

Vip
A(Xi; δn)lIi,n) ≤ 1

n
E[V 2

i p
A(Xi; δn)2l(Ii,n)2]

≤ 1

n
E[V 2

i ]

→ 0
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as n→∞.

Lemma 2.B.7. Let {(δn, Sn)}∞n=1 be any sequence of positive numbers and positive integers.

Fix x ∈ X , and let X∗1 , ..., X
∗
Sn

be Sn independent draws from the uniform distribution on

B(x, δn) so that

ps(x; δn) =
1

Sn

Sn∑
s=1

A(X∗s ).

Then,

E[ps(x; δn)− pA(x; δn)] = 0,

E[(ps(x; δn)− pA(x; δn))2] ≤ 1

Sn
,

|E[ps(x; δn)2 − pA(x; δn)2]| ≤ 1

Sn
,

E[(ps(x; δn)2 − pA(x; δn)2)2] ≤ 4

Sn
,

Pr(ps(x; δn) ∈ {0, 1}) ≤ (1− pA(x; δn))Sn + pA(x; δn)Sn .

Moreover, for any ε > 0,

E[|ps(x; δn)− pA(x; δn)|] ≤ 1

Snε2
+ ε,

and if Sn →∞, then

E[|ps(x; δn)− pA(x; δn)|]→ 0

as n→∞.

Proof. By construction, E[A(X∗s )] = pA(x; δn), so

E[ps(x; δn)− pA(x; δn)] = E[
1

Sn

Sn∑
s=1

A(X∗s )]− pA(x; δn)

= E[A(X∗s )]− pA(x; δn)

= 0.
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We have

E[(ps(x; δn)− pA(x; δn))2] = Var(ps(x; δn))

= Var(
1

Sn

Sn∑
s=1

A(X∗s ))

=
1

Sn
Var(A(X∗s ))

≤ 1

Sn
E[A(X∗s )2]

≤ 1

Sn
,

|E[ps(x; δn)2 − pA(x; δn)2]| = |Var(ps(x; δn)) + (E[ps(x; δn)])2 − pA(x; δn)2|

≤ 1

Sn
+ |(pA(x; δn))2 − pA(x; δn)2|

=
1

Sn
,

and

E[(ps(x; δn)2 − pA(x; δn)2)2]

= E[(ps(x; δn) + pA(x; δn))2(ps(x; δn)− pA(x; δn))2]

≤ 4E[(ps(x; δn)− pA(x; δn))2]

≤ 4

Sn
.

Now note that we have the following bounds on Pr(A(X∗s ) = 0) and Pr(A(X∗s ) = 1):

0 ≤ Pr(A(X∗s ) = 0) ≤ 1− pA(x; δn),

0 ≤ Pr(A(X∗s ) = 1) ≤ pA(x; δn).
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It follows that

0 ≤ Pr(ps(x; δn) ∈ {0, 1})

= Pr(A(X∗s ) = 0)Sn + Pr(A(X∗s ) = 1)Sn

≤ (1− pA(x; δn))Sn + pA(x; δn)Sn .

Lastly, for any ε > 0,

E[|ps(x; δn)− pA(x; δn)|]

= E[|ps(x; δn)− pA(x; δn)|||ps(x; δn)− pA(x; δn)| ≥ ε] Pr(|ps(x; δn)− pA(x; δn)| ≥ ε)

+ E[|ps(x; δn)− pA(x; δn)|||ps(x; δn)− pA(x; δn)| < ε] Pr(|ps(x; δn)− pA(x; δn)| < ε)

< 1 · Var(ps(x; δn))

ε2
+ ε · 1

≤ 1

Snε2
+ ε,

where we use Chebyshev’s inequality for the first inequality. We can make E[|ps(x; δn) −

pA(x; δn)|] arbitrarily close to zero by taking sufficiently small ε > 0 and sufficiently large

Sn, which implies that E[|ps(x; δn)− pA(x; δn)|] = o(1) if Sn →∞.

Lemma 2.B.8. Let Isi,n = 1{ps(Xi; δn) ∈ (0, 1)}, and let {Vi}∞i=1 be i.i.d. random variables

such that E[V 2
i ] <∞. If Assumption 2.1 holds, Sn →∞, and δn → 0, then

1

n

n∑
i=1

Vip
s(Xi; δn)lIsi,n −

1

n

n∑
i=1

Vip
A(Xi; δn)lIi,n = op(1)

for l = 0, 1, 2, 3, 4. If, in addition, Assumption 2.5 holds, and E[Vi|Xi] is bounded, then

1√
n

n∑
i=1

Vip
s(Xi; δn)lIsi,n −

1√
n

n∑
i=1

Vip
A(Xi; δn)lIi,n = op(1)

for l = 0, 1, 2.
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Proof. We have

1

n

n∑
i=1

Vip
s(Xi; δn)lIsi,n −

1

n

n∑
i=1

Vip
A(Xi; δn)lIi,n

=
1

n

n∑
i=1

Vip
s(Xi; δn)l(Isi,n − Ii,n) +

1

n

n∑
i=1

Vi(p
s(Xi; δn)l − pA(Xi; δn)l)Ii,n.

We first consider 1
n

∑n
i=1 Vi(p

s(Xi; δn)l−pA(Xi; δn)l)Ii,n. By Lemma 2.B.7, for l = 0, 1, 2,

|E[
1

n

n∑
i=1

Vi(p
s(Xi; δn)l − pA(Xi; δn)l)Ii,n]|

= |E[Vi(p
s(Xi; δn)l − pA(Xi; δn)l)Ii,n]|

≤ E[|E[Vi|Xi]||E[ps(Xi; δn)l − pA(Xi; δn)l|Xi]|Ii,n]

≤ 1

Sn
E[|E[Vi|Xi]|Ii,n]

= O(S−1
n ).

Also, by Lemma 2.B.7,

|E[
1

n

n∑
i=1

Vi(p
s(Xi; δn)3 − pA(Xi; δn)3)Ii,n]|

= |E[Vi(p
s(Xi; δn)− pA(Xi; δn))(ps(Xi; δn)2 + ps(Xi; δn)pA(Xi; δn) + pA(Xi; δn)2)Ii,n]|

≤ E[|E[Vi|Xi]||E[(ps(Xi; δn)− pA(Xi; δn))

× (ps(Xi; δn)2 + ps(Xi; δn)pA(Xi; δn) + pA(Xi; δn)2)|Xi]|Ii,n]

≤ 3E[|E[Vi|Xi]|E[|ps(Xi; δn)− pA(Xi; δn)||Xi]Ii,n]

= o(1),
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and

|E[
1

n

n∑
i=1

Vi(p
s(Xi; δn)4 − pA(Xi; δn)4)Ii,n]|

= |E[Vi(p
s(Xi; δn)2 + pA(Xi; δn)2)(ps(Xi; δn) + pA(Xi; δn))(ps(Xi; δn)− pA(Xi; δn))Ii,n]|

≤ E[|E[Vi|Xi]||E[(ps(Xi; δn)2 + pA(Xi; δn)2)

× (ps(Xi; δn) + pA(Xi; δn))(ps(Xi; δn)− pA(Xi; δn))|Xi]|Ii,n]

≤ 4E[|E[Vi|Xi]|E[|ps(Xi; δn)− pA(Xi; δn)||Xi]Ii,n]

= o(1).

As for variance, for l = 0, 1, 2,

Var(
1

n

n∑
i=1

Vi(p
s(Xi; δn)l − pA(Xi; δn)l)Ii,n)

≤ 1

n
E[V 2

i (ps(Xi; δn)l − pA(Xi; δn)l)2Ii,n]

≤ 1

n
E[E[V 2

i |Xi]E[(ps(Xi; δn)l − pA(Xi; δn)l)2|Xi]Ii,n]

≤ 4

nSn
E[E[V 2

i |Xi]Ii,n]

= O((nSn)−1),

and for l = 3, 4,

Var(
1

n

n∑
i=1

Vi(p
s(Xi; δn)l − pA(Xi; δn)l)Ii,n) ≤ 1

n
E[V 2

i (ps(Xi; δn)l − pA(Xi; δn)l)2Ii,n]

≤ 1

n
E[V 2

i Ii,n]

= o(1).

Therefore, 1
n

∑n
i=1 Vi(p

s(Xi; δn)l − pA(Xi; δn)l)Ii,n = op(1) if Sn → ∞ for l = 0, 1, 2, 3, 4,

and 1√
n

∑n
i=1 Vi(p

s(Xi; δn)l − pA(Xi; δn)l)Ii,n = op(1) if n−1/2Sn →∞ for l = 0, 1, 2.

We next show that 1
n

∑n
i=1 Vip

s(Xi; δn)l(Isi,n − Ii,n) = op(1) if Sn → ∞ and δn → 0 for
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l ≥ 0. We have

|E[
1

n

n∑
i=1

Vip
s(Xi; δn)l(Isi,n − Ii,n)]| = |E[Vip

s(Xi; δn)l(Isi,n − Ii,n)]|

≤ E[|E[Vi|Xi]||E[ps(Xi; δn)l(Isi,n − Ii,n)|Xi]|]

≤ E[|E[Vi|Xi]|E[|Isi,n − Ii,n||Xi]].

Note that by construction, 1{ps(Xi; δn) ∈ (0, 1)} ≤ 1{pA(Xi; δn) ∈ (0, 1)} with probability

one conditional on Xi = x, so that

E[|Isi,n − Ii,n||Xi = x] = −E[Isi,n − Ii,n|Xi = x].

Suppose A is continuous at x and A(x) ∈ (0, 1). Then limδ→0 p
A(x; δ) = A(x) ∈ (0, 1) by

Part 1 of Corollary 2.A.1, and hence pA(x; δn) ∈ [ε, 1 − ε] for sufficiently small δn > 0 for

some constant ε ∈ (0, 1/2). It follows that

E[Isi,n|Xi = x] = 1− Pr(ps(x; δn) ∈ {0, 1})

≥ 1− (1− pA(x; δn))Sn − pA(x; δn)Sn

≥ 1− 2(1− ε)Sn

→ 1

as Sn →∞, where the first inequality follows from Lemma 2.B.7. This implies that E[Isi,n−

Ii,n|Xi = x] → 0 as n → ∞. Suppose x ∈ int(X0) ∪ int(X1). Then B(x, δn) ⊂ X0 or

B(x, δn) ⊂ X1 for sufficiently small δn > 0 by the fact that int(X0) and int(X1) are open,

and hence pA(x; δn) ∈ {0, 1} and ps(x; δn) ∈ {0, 1} for sufficiently small δn > 0, so that

E[Isi,n − Ii,n|Xi = x] → 0 as n → ∞. Therefore, E[Isi,n − Ii,n|Xi = x] → 0 for almost every

x ∈ X , since A is continuous at x for almost every x ∈ X by Assumption 2.1 (a), and either

A(x) ∈ (0, 1) or x ∈ int(X0) ∪ int(X1) for almost every x ∈ X by Assumption 2.1 (b). By

the Dominated Convergence Theorem,

−E[|E[Vi|Xi]|E[Isi,n − Ii,n|Xi]]→ 0
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as n→∞.

As for variance,

Var(
1

n

n∑
i=1

Vip
s(Xi; δn)l(Isi,n − Ii,n)) ≤ 1

n
E[V 2

i p
s(Xi; δn)2l(Isi,n − Ii,n)2]

≤ 1

n
E[V 2

i ]

→ 0.

Lastly, we show that, for l ≥ 0, 1√
n

∑n
i=1 Vip

s(Xi; δn)l(Isi,n − Ii,n) = op(1) if Assumption

2.5 holds, and E[Vi|Xi] is bounded. Let ηn = γ logn
Sn

, where γ is the one satisfying Assumption

2.5. We have

|E[
1√
n

n∑
i=1

Vip
s(Xi; δn)l(Isi,n − Ii,n)]|

≤
√
nE[|E[Vi|Xi]|E[|Isi,n − Ii,n||Xi]]

= −
√
nE[|E[Vi|Xi]|E[Isi,n − 1|Xi]Ii,n]

≤
√
nE[|E[Vi|Xi]|((1− pA(Xi; δn))Sn + pA(Xi; δn)Sn)Ii,n]

=
√
nE[|E[Vi|Xi]|((1− pA(Xi; δn))Sn + pA(Xi; δn)Sn)1{pA(Xi; δn) ∈ (0, ηn) ∪ (1− ηn, 1)}]

+
√
nE[|E[Vi|Xi]|((1− pA(Xi; δn))Sn + pA(Xi; δn)Sn)1{pA(Xi; δn) ∈ [ηn, 1− ηn]}]

≤ (sup
x∈X
|E[Vi|Xi = x]|)(

√
nPr(pA(Xi; δn) ∈ (0, ηn) ∪ (1− ηn, 1)) + 2

√
n(1− ηn)Sn),

where the second equality follows from the fact that Isi,n ≤ Ii,n with strict inequality only

if Ii,n = 1. By Assumption 2.5,
√
nPr(pA(Xi; δn) ∈ (0, ηn) ∪ (1 − ηn, 1)) = o(1). As for

√
n(1 − ηn)Sn , first observe that ηn = γ logn

Sn
= γ logn

n1/2
1

n−1/2Sn
→ 0, since n−1/2Sn → ∞ and
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logn
n1/2 → 0. Using the fact that et ≥ 1 + t for every t ∈ R, we have

√
n(1− ηn)Sn ≤

√
n(e−ηn)Sn

=
√
ne−ηnSn

=
√
ne−γ logn

=
√
nn−γ

= n1/2−γ

→ 0,

since γ > 1/2. As for variance,

Var(
1√
n

n∑
i=1

Vip
s(Xi; δn)l(Isi,n − Ii,n)) ≤ E[V 2

i p
s(Xi; δn)2l(Isi,n − Ii,n)2]

≤ E[V 2
i |Isi,n − Ii,n|]

= E[E[V 2
i |Xi]E[|Isi,n − Ii,n||Xi]]

= o(1).

2.C Proofs

2.C.1 Proof of Proposition 2.1

Suppose that Assumptions 2.1 and 2.2 hold. Here, we only show that

(a) E[Y1i − Y0i|Xi = x] is identified for every x ∈ int(X ) such that pA(x) ∈ (0, 1).

(b) Let S be any open subset of X such that pA(x) exists for all x ∈ S. Then E[Y1i −

Y0i|Xi ∈ S] is identified only if pA(x) ∈ (0, 1) for almost every x ∈ S.

The results for E[Di(1) − Di(0)|Xi = x] and E[Di(1) − Di(0)|Xi ∈ S] are obtained by a

similar argument.
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Proof of Part (a). Pick an x ∈ int(X ) such that pA(x) ∈ (0, 1). If A(x) ∈ (0, 1),

E[Y1i − Y0i|Xi = x] is trivially identified by Property 2.1:

E[Yi|Xi = x, Zi = 1]− E[Yi|Xi = x, Zi = 0] = E[Y1i − Y0i|Xi = x].

We next consider the case where A(x) ∈ {0, 1}. Since x ∈ int(X ), B(x, δ) ⊂ X for any

sufficiently small δ > 0. Moreover, since pA(x) = limδ→0 p
A(x; δ) ∈ (0, 1), pA(x; δ) ∈ (0, 1)

for any sufficiently small δ > 0. This implies that we can find points x0,δ, x1,δ ∈ B(x, δ)(⊂ X )

such that A(x0,δ) < 1 and A(x1,δ) > 0 for any sufficiently small δ > 0, for otherwise

pA(x; δ) ∈ {0, 1}. Noting that x0,δ → x and x1,δ → x as δ → 0,

lim
δ→0

(E[Yi|Xi = x1,δ, Zi = 1]− E[Yi|Xi = x0,δ, Zi = 0])

= lim
δ→0

(E[Yi1|Xi = x1,δ]− E[Yi0|Xi = x0,δ]) = E[Y1i − Y0i|Xi = x],

where the first equality follows from Property 2.1, and the second from Assumption 2.2.

Proof of Part (b). Suppose to the contrary that Lp({x ∈ S : pA(x) ∈ {0, 1}}) > 0.

Without loss of generality, assume Lp({x ∈ S : pA(x) = 1}) > 0. The proof proceeds in

four steps.

Step 1. Lp(S ∩ X1) > 0.

Proof. By Assumption 2.1, A is continuous almost everywhere. Part 1 of Cororally 2.A.1

then implies that pA(x) = A(x) for almost every x ∈ {x∗ ∈ S : pA(x∗) = 1}. Since

Lp({x ∈ S : pA(x) = 1}) > 0, Lp({x ∈ S : pA(x) = 1, pA(x) = A(x)}) > 0, and hence

Lp(S ∩ X1) > 0.

Step 2. S ∩ int(X1) 6= ∅.

Proof. Suppose that S ∩ int(X1) = ∅. Then, we must have that S ∩ X1 ⊂ X1 \ int(X1). It

then follows that Lp(S ∩X1) ≤ Lp(X1 \ int(X1)) = Lp(X1)−Lp(int(X1)) = 0, where the last

equality holds by Assumption 2.1. But this is a contradiction to the result from Step 1.

Step 3. pA(x) = 1 for any x ∈ int(X1).
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Proof. Pick any x ∈ int(X1). By the definition of interior, B(x, δ) ⊂ X1 for any sufficiently

small δ > 0. Therefore, pA(x; δ) = 1 for any sufficiently small δ > 0.

Step 4. E[Y1i − Y0i|Xi ∈ S] is not identified.

Proof. We first introduce some notation. Let Q be the set of all distributions of

(Y1i, Y0i, Xi, Zi) satisfying Property 2.1 and Assumptions 2.1 and 2.2. Let P be the

set of all distributions of (Yi, Xi, Zi). Let T : Q → P be a function such that, for

Q ∈ Q, T (Q) is the distribution of (ZiY1i + (1 − Zi)Y0i, Xi, Zi), where the distribution

of (Y1i, Y0i, Xi, Zi) is Q. Let Q0 and P0 denote the true distributions of (Y1i, Y0i, Xi, Zi)

and (Yi, Xi, Zi), respectively. Given P0, the identified set of E[Y1i − Y0i|Xi ∈ S] is given

by {EQ[Y1i − Y0i|Xi ∈ S] : P0 = T (Q), Q ∈ Q}, where EQ[·] is the expectation operator

under distribution Q. We show that this set contains two distinct values. In what follows,

Pr(·) and E[·] without a subscript denote the probability and expectation under the true

distributions Q0 and P0 as up until now.

Now pick any x∗ ∈ S ∩ int(X1). Since S and int(X1) are open, there is some δ > 0

such that B(x∗, δ) ⊂ S ∩ int(X1). Let ε = δ
2 , and consider a function f : X → R such

that f(x) = E[Y0i|X = x] for all x ∈ X \ B(x∗, ε) and f(x) = E[Y0i|X = x] − 1 for

all x ∈ B(x∗, ε). Below, we show that f is continuous at any point x ∈ X such that

pA(x) ∈ (0, 1) and A(x) ∈ {0, 1}. Pick any x ∈ X such that pA(x) ∈ (0, 1) and A(x) ∈ {0, 1}.

Since B(x∗, δ) ⊂ int(X1) and int(X1) ⊂ {x′ ∈ X : pA(x′) = 1} by Step 3, x /∈ B(x∗, δ).

Hence, B(x, ε) ⊂ X \ B(x∗, ε). By Assumption 2.2 and the definition of f , f is continuous

at x.

Now take any random vector (Y ∗1i, Y
∗

0i, X
∗
i , Z

∗
i ) that is distributed according to the true

distribution Q0. Let Q be the distribution of (Y Q
1i , Y

Q
0i , X

Q
i , Z

Q
i ), where (Y Q

1i , X
Q
i , Z

Q
i ) =

(Y ∗1i, X
∗
i , Z

∗
i ), and

Y Q
0i =


Y ∗0i if X∗i ∈ X \B(x∗, ε)

Y ∗0i − 1 if X∗i ∈ B(x∗, ε).

Note first that Q ∈ Q, since EQ[Y Q
1i |X

Q
i = x] = E[Y ∗1i|X∗i = x] and EQ[Y Q

0i |X
Q
i = x] = f(x),

where E[Y ∗1i|X∗i ] and f are both continuous at any point x ∈ X such that pA(x) ∈ (0, 1)
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and A(x) ∈ {0, 1}. Also, ZQi = Z∗i = 1 if X∗i ∈ B(x∗, ε). It then follows that

Y Q
i = ZQi Y

Q
1i + (1− ZQi )Y Q

0i

=


Z∗i Y

∗
1i + (1− Z∗i )Y ∗0i if X∗i ∈ X \B(x∗, ε)

Z∗i Y
∗

1i if X∗i ∈ B(x∗, ε)

and

Y ∗i = Z∗i Y
∗

1i + (1− Z∗i )Y ∗0i

=


Z∗i Y

∗
1i + (1− Z∗i )Y ∗0i if X∗i ∈ X \B(x∗, ε)

Z∗i Y
∗

1i if X∗i ∈ B(x∗, ε).

Thus, Y Q
i = Y ∗i , and hence T (Q) = T (Q0) = P0.

Using EQ[Y Q
1i |X

Q
i = x] = E[Y ∗1i|X∗i = x] and EQ[Y Q

0i |X
Q
i = x] = f(x), we have

EQ[Y Q
1i − Y

Q
0i |X

Q
i ∈ S]

= EQ[EQ[Y Q
1i |X

Q
i ]|XQ

i ∈ S]

− EQ[EQ[Y Q
0i |X

Q
i ]|XQ

i ∈ S,X
Q
i /∈ B(x∗, ε)]PrQ(XQ

i /∈ B(x∗, ε)|XQ
i ∈ S)

− EQ[EQ[Y Q
0i |X

Q
i ]|XQ

i ∈ B(x∗, ε)]PrQ(XQ
i ∈ B(x∗, ε)|XQ

i ∈ S)

= E[E[Y ∗1i|X∗i ]|X∗i ∈ S]− E[f(X∗i )|X∗i ∈ S,X∗i /∈ B(x∗, ε)] Pr(X∗i /∈ B(x∗, ε)|X∗i ∈ S)

− E[f(X∗i )|X∗i ∈ B(x∗, ε)] Pr(X∗i ∈ B(x∗, ε)|X∗i ∈ S)

= E[Y ∗1i|X∗i ∈ S]− E[Y ∗0i|X∗i ∈ S,X∗i /∈ B(x∗, ε)] Pr(X∗i /∈ B(x∗, ε)|X∗i ∈ S)

− E[Y ∗0i − 1|X∗i ∈ B(x∗, ε)] Pr(X∗i ∈ B(x∗, ε)|X∗i ∈ S)

= E[Y ∗1i − Y ∗0i|X∗i ∈ S] + Pr(X∗i ∈ B(x∗, ε)|X∗i ∈ S).

By the definition of support, Pr(X∗i ∈ B(x∗, ε)) > 0. Since T (Q) = T (Q0) = P0 but

EQ[Y Q
1i − Y

Q
0i |X

Q
i ∈ S] 6= E[Y ∗1i − Y ∗0i|X∗i ∈ S], E[Y1i − Y0i|Xi ∈ S] is not identified.
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2.C.2 Proof of Corollary 2.1

If Pr(Di(1)−Di(0) = 1|Xi = x) = 1, Pr(Y1i − Y0i = Yi(1)− Yi(0)|Xi = x) = 1, and hence

E[Y1i − Y0i|Xi = x] = E[Yi(1)− Yi(0)|Xi = x]. Then, Part (a) follows from Proposition 2.1

(a). If Pr(Di(1) ≥ Di(0)|Xi = x) = 1, we have

E[Y1i − Y0i|Xi = x] = E[(Di(1)−Di(0))(Yi(1)− Yi(0))|Xi = x]

= Pr(Di(1) 6= Di(0)|Xi = x)E[Yi(1)− Yi(0)|Di(1) 6= Di(0), Xi = x].

If in addition Pr(Di(1) 6= Di(0)|Xi = x) > 0, we obtain

E[Yi(1)− Yi(0)|Di(1) 6= Di(0), Xi = x] =
E[Y1i − Y0i|Xi = x]

Pr(Di(1) 6= Di(0)|Xi = x)

=
E[Y1i − Y0i|Xi = x]

E[Di(1)−Di(0)|Xi = x]
.

Then, Part (b) follows from Proposition 2.1 (a).

2.C.3 Proof of Proposition 2.2

Here, we only show that there exists x ∈ X such that E[Y1i − Y0i|Xi = x] under stated

conditions. The result for E[Di(1)−Di(0)|Xi = x] is obtained analogously.

First, consider the case where Pr(A(Xi) ∈ (0, 1)) > 0. In this case, there exists x ∈ X

such that A(x) ∈ (0, 1). By Property 1, E[Y1i − Y0i|Xi = x] is trivially identified.

Second, consider the case where Pr(A(Xi) ∈ (0, 1)) = 0. In this case, Pr(A(Xi) = 1) ∈

(0, 1), since otherwise Var(A(Xi)) = 0. Therefore, X1 is nonempty and X1 6= Rp. Now, note

that the boundary of X1, denoted by ∂X1, is nonempty by the following two facts: (1) The

boundary of a set S ⊂ Rp is empty if and only if S is a closed and open set in Rp; (2) If a set

S is a closed and open set in Rp, then either S is empty or S = Rp. Since ∂X1 is nonempty,

there exists x ∈ ∂X1. By the definition of the boundary, for any δ > 0, B(x, δ) ∩ X1 and

B(x, δ) ∩ (X \ X1) are nonempty. This implies that we can find points x0,δ, x1,δ ∈ B(x, δ)

such that A(x0,δ) < 1 and A(x1,δ) = 1 for any sufficiently small δ > 0. Noting that x0,δ → x
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and x1,δ → x as δ → 0,

lim
δ→0

(E[Yi|Xi = x1,δ, Zi = 1]− E[Yi|Xi = x0,δ, Zi = 0])

= lim
δ→0

(E[Y1i|Xi = x1,δ]− E[Y0i|Xi = x0,δ]) = E[Y1i − Y0i|Xi = x],

where the first equality follows from Property 1, and the second from the continuity of

E[Yzi|Xi] for z ∈ {0, 1}.

2.C.4 Proof of Theorem 2.1

We prove consistency and asymptotic normality of the following estimators. First, consider

the following 2SLS regression using the observations with pA(Xi; δn) ∈ (0, 1):

Di = γ0(1− In) + γ1Zi + γ2p
A(Xi; δn) + νi (2.14)

Yi = β0(1− In) + β1Di + β2p
A(Xi; δn) + εi. (2.15)

Here In is a dummy random variable which equals one if there exists a constant q ∈ (0, 1)

such that A(Xi) ∈ {0, q, 1} for all i ∈ {1, ..., n}. In is the indicator that A(Xi) takes on only

one nondegenerate value in the sample. If the support of A(Xi) (in the population) contains

only one value in (0, 1), pA(Xi; δn) is asymptotically constant conditional on pA(Xi; δn) ∈

(0, 1). To avoid the multicollinearity between asymptotically constant pA(Xi; δn) and a

constant, we do not include the constant term if In = 1. Let Ii,n = 1{pA(Xi; δn) ∈ (0, 1)},

Di,n = (1, Di, p
A(Xi; δn))′, Zi,n = (1, Zi, p

A(Xi; δn))′, Dnc
i,n = (Di, p

A(Xi; δn))′, and Znci,n =

(Zi, p
A(Xi; δn))′. The 2SLS estimator β̂ from this regression is then given by

β̂ =


(
∑n

i=1 Zi,nD
′
i,nIi,n)−1

∑n
i=1 Zi,nYiIi,n if In=0

(
∑n

i=1 Znci,n(Dnc
i,n)′Ii,n)−1

∑n
i=1 Znci,nYiIi,n if In=1.

Let β̂1 denote the 2SLS estimator of β1 in the above regression.

Similarly, consider the following simulation version of the 2SLS regression using the
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observations with ps(Xi; δn) ∈ (0, 1):

Di = γ0(1− In) + γ1Zi + γ2p
s(Xi; δn) + νi (2.16)

Yi = β0(1− In) + β1Di + β2p
s(Xi; δn) + εi. (2.17)

Let β̂s1 denote the 2SLS estimator of β1 in the simulation-based regression.

Below, we prove the following result.

Theorem 2.C.1. Suppose that Assumptions 2.1 and 2.3 hold, and that δn → 0, nδn → ∞

and Sn →∞ as n→∞. Then the 2SLS estimators β̂1 and β̂s1 converge in probability to

β1 ≡ lim
δ→0

E[ωi(δ)(Yi(1)− Yi(0))],

where

ωi(δ) =
pA(Xi; δ)(1− pA(Xi; δ))(Di(1)−Di(0))

E[pA(Xi; δ)(1− pA(Xi; δ))(Di(1)−Di(0))]
.

Suppose, in addition, that Assumptions 2.4 and 2.5 hold and that nδ2
n → 0 as n→∞. Then

σ̂−1
n (β̂1 − β1)

d−→ N (0, 1),

(σ̂sn)−1(β̂s1 − β1)
d−→ N (0, 1).

where we define σ̂−1
n and (σ̂sn)−1 as follows: let

Σ̂n

=


(
∑n

i=1 Zi,nD
′
i,nIi,n)−1(

∑n
i=1 ε̂

2
i,nZi,nZ

′
i,nIi,n)(

∑n
i=1 Di,nZ

′
i,nIi,n)−1 if In = 0

(
∑n

i=1 Znci,n(Dnc
i,n)′Ii,n)−1(

∑n
i=1 ε̂

2
i,nZ

nc
i,n(Znci,n)′Ii,n)(

∑n
i=1 Dnc

i,n(Znci,n)′Ii,n)−1 if In = 1,

where

ε̂i,n =


Yi −D′i,nβ̂ if In = 0

Yi − (Dnc
i,n)′β̂ if In = 1.

Let σ̂2
n denote the estimator for the variance of β̂1. That is, σ̂2

n is the second diagonal
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element of Σ̂n when In = 0 and is the first diagonal element of Σ̂n when In = 1. (σ̂sn)2 is

the analogously-defined estimator for the variance of β̂s1 from the simulation-based regression.

Throughout the proof, we omit the subscript n from Ii,n, Di,n, Zi,n, ε̂i,n, Σ̂n, σ̂n, etc.

for notational brevity. We provide proofs separately for the two cases, the case in which

Pr(A(Xi) ∈ (0, 1)) > 0 and the case in which Pr(A(Xi) ∈ (0, 1)) = 0. For each case,

we first prove consistency and asymptotic normality of β̂1, and then prove consistency and

asymptotic normality of β̂s1.

2.C.4.1 Consistency and Asymptotic Normality of β̂1 When

Pr(A(Xi) ∈ (0, 1)) > 0

By Lemma 2.B.6,

lim
δ→0

E[pA(Xi; δ)(1− pA(Xi; δ))(Di(1)−Di(0))] = E[A(Xi)(1−A(Xi))(Di(1)−Di(0))].

When Pr(A(Xi) ∈ (0, 1)) > 0, E[A(Xi)(1 − A(Xi))(Di(1) − Di(0))] = E[pA(Xi)(1 −

pA(Xi))(Di(1)−Di(0))], since pA(x) = A(x) for almost every x ∈ X by Proposition 2.A.1.

Note that E[pA(Xi)(1−pA(Xi))(Di(1)−Di(0))] =
∫
X p

A(x)(1−pA(x))E[Di(1)−Di(0)|Xi =

x]fX(x)dx. Hence, under Assumption 2.3 (b), E[pA(Xi)(1 − pA(Xi))(Di(1) −Di(0))] > 0.

Again by Lemma 2.B.6,

lim
δ→0

E[ωi(δ)(Yi(1)− Yi(0))] =
E[A(Xi)(1−A(Xi))(Di(1)−Di(0))(Yi(1)− Yi(0)]

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]
.

Let β1 = E[A(Xi)(1−A(Xi))(Di(1)−Di(0))(Yi(1)−Yi(0)]
E[A(Xi)(1−A(Xi))(Di(1)−Di(0))] . Let

β̂c = (
n∑
i=1

ZiD
′
iIi)
−1

n∑
i=1

ZiYiIi

β̂nc = (
n∑
i=1

Znci (Dnc
i )′Ii)

−1
n∑
i=1

Znci YiIi,

and let β̂c1 = (0, 1, 0)β̂c and β̂nc1 = (1, 0)β̂nc. β̂1 is given by

β̂1 = β̂c1(1− In) + β̂nc1 In.
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Also, let D̃i = (1, Di, A(Xi))
′, Z̃i = (1, Zi, A(Xi))

′, D̃nc
i = (Di, A(Xi))

′, Z̃nci = (Zi, A(Xi))
′,

and IAi = 1{A(Xi) ∈ (0, 1)}.

We claim that Pr(In = 1) → 0 when Var(A(Xi)|IAi = 1) > 0, and that Pr(In = 1) → 1

when Var(A(Xi)|IAi = 1) = 0. To show the first claim, observe that In = 1 if and only if

V̂n = 0, where

V̂n =

∑n
i=1(A(Xi)−

∑n
i=1 A(Xi)I

A
i∑n

i=1 I
A
i

)2IAi∑n
i=1 I

A
i

is the sample variance of A(Xi) conditional on IAi = 1. When Var(A(Xi)|IAi = 1) > 0,

Pr(In = 1) = Pr(V̂n = 0)

≤ Pr(|V̂n −Var(A(Xi)|IAi = 1)| ≥ Var(A(Xi)|IAi = 1))

→ 0,

where the convergence follows since V̂n
p−→ Var(A(Xi)|IAi = 1) > 0.

To show the second claim, note that, when Var(A(Xi)|IAi = 1) = 0, there exists q ∈ (0, 1)

such that Pr(A(Xi) = q|IAi = 1) = 1. It follows that

Pr(In = 0) = Pr(A(Xi) ∈ {0, 1} for all i = 1, ..., n)

+ Pr(A(Xi) = q′ and A(Xj) = q′′ for some q′, q′′ ∈ (0, 1) with q′ 6= q′′

for some i, j ∈ {1, ..., n})

= Pr(A(Xi) ∈ {0, 1} for all i = 1, ..., n)

= (1− Pr(A(Xi) ∈ (0, 1)))n,

which converges to zero as n→∞, since Pr(A(Xi) ∈ (0, 1)) > 0.

The above claims imply that β̂1 = β̂c1 with probability approaching one when

Var(A(Xi)|IAi = 1) > 0, and that β̂1 = β̂nc1 with probability approaching one when

Var(A(Xi)|IAi = 1) = 0. Therefore, to prove consistency and asymptotic normality of

β̂1, it suffices to show those of β̂c1 when Var(A(Xi)|IAi = 1) > 0 and those of β̂nc1 when

Var(A(Xi)|IAi = 1) = 0.

Below we first show that, if Assumptions 2.1 and 2.3 hold and δn → 0 as n → ∞,

171



then β̂1
p−→ β1. We then show that, if, in addition, Assumption 2.4 holds and nδ2

n → 0 as

n→∞, then σ̂−1(β̂1 − β1)
d−→ N (0, 1).

Proof of Consistency. To prove consistency of β̂1, we first show that β̂c1
p−→ β1 when

Var(A(Xi)|IAi = 1) > 0. We then show that β̂nc1
p−→ β1 whether or not Var(A(Xi)|IAi =

1) > 0. By Lemma 2.B.6,

β̂c = (
n∑
i=1

ZiD
′
iIi)
−1

n∑
i=1

ZiYiIi
p−→ (E[Z̃iD̃

′
iI
A
i ])−1E[Z̃iYiI

A
i ]

provided that E[Z̃iD̃
′
iI
A
i ] is invertible. After a few lines of algebra, we have

det(E[Z̃iD̃
′
iI
A
i ])

= Pr(IAi = 1)2Var(A(Xi)|IAi = 1)E[Di(Zi −A(Xi))I
A
i ]

= Pr(IAi = 1)2Var(A(Xi)|IAi = 1)E[(ZiDi(1) + (1− Zi)Di(0))(Zi −A(Xi))I
A
i ]

= Pr(IAi = 1)2Var(A(Xi)|IAi = 1)E[((Zi − ZiA(Xi))Di(1)− (1− Zi)A(Xi)Di(0))IAi ]

= Pr(IAi = 1)2Var(A(Xi)|IAi = 1)E[((A(Xi)−A(Xi)
2)Di(1)− (1−A(Xi))A(Xi)Di(0))IAi ]

= Pr(IAi = 1)2Var(A(Xi)|IAi = 1)E[A(Xi)(1−A(Xi))(Di(1)−Di(0))IAi ]

= Pr(IAi = 1)2Var(A(Xi)|IAi = 1)E[A(Xi)(1−A(Xi))(Di(1)−Di(0))],

where the fourth equality follows from Property 2.1. Therefore, E[Z̃iD̃
′
iI
A
i ] is invertible

when Var(A(Xi)|IAi = 1) > 0. Another few lines of algebra gives

(E[Z̃iD̃
′
iI
A
i ])−1 =

1

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]


∗ ∗ ∗

0 1 −1

∗ ∗ ∗


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when Var(A(Xi)|IAi = 1) > 0. Therefore, when Var(A(Xi)|IAi = 1) > 0,

β̂c1
p−→ E[ZiYiI

A
i ]− E[A(Xi)YiI

A
i ]

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]

=
E[ZiY1iI

A
i ]− E[A(Xi)(ZiY1i + (1− Zi)Y0i)I

A
i ]

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]

=
E[A(Xi)Y1iI

A
i ]− E[A(Xi)(A(Xi)Y1i + (1−A(Xi))Y0i)I

A
i ]

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]

=
E[A(Xi)(1−A(Xi))(Y1i − Y0i)I

A
i ]

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]

=
E[A(Xi)(1−A(Xi))(Di(1)−Di(0))(Yi(1)− Yi(0))]

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]

= β1,

where the third line follows from Property 2.1, and the second last follows from the definitions

of Y1i and Y0i.

We next consider β̂nc1 . By Lemma 2.B.6,

β̂nc = (
n∑
i=1

Znci (Dnc
i )′Ii)

−1
n∑
i=1

Znci YiIi
p−→ (E[Z̃nci (D̃nc

i )′IAi ])−1E[Z̃nci YiI
A
i ]

provided that E[Z̃nci (D̃nc
i )′IAi ] is invertible. After a few lines of algebra, we have

det(E[Z̃nci (D̃nc
i )′IAi ]) = E[A(Xi)

2IAi ]E[Di(Zi −A(Xi))I
A
i ]

= E[A(Xi)
2IAi ]E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]

> 0.

Another few lines of algebra gives

(E[Z̃nci (D̃nc
i )′IAi ])−1 =

1

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]

1 −1

∗ ∗

 .
Therefore,

β̂nc1
p−→ E[ZiYiI

A
i ]− E[A(Xi)YiI

A
i ]

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]
= β1.
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Proof of Asymptotic Normality. Let (σ̂c)2 be the second diagonal element of

Σ̂c = (
n∑
i=1

ZiD
′
iIi)
−1(

n∑
i=1

ε̂2iZiZ
′
iIi)(

n∑
i=1

DiZ
′
iIi)
−1

and (σ̂nc)2 be the first diagonal element of

Σ̂nc = (
n∑
i=1

Znci,n(Dnc
i,n)′Ii)

−1(
n∑
i=1

ε̂2i,nZ
nc
i,n(Znci,n)′Ii)(

n∑
i=1

Dnc
i,n(Znci,n)′Ii)

−1.

We only show that (σ̂c)−1(β̂c1−β1)
d−→ N (0, 1) when Var(A(Xi)|IAi = 1) > 0. We can show

that (σ̂nc)−1(β̂nc1 − β1)
d−→ N (0, 1) by an analogous argument. The proof proceeds in six

steps.

Step 1. Let β̃n = (E[Z̃iD̃
′
iIi])

−1E[Z̃iYiIi], and let β̃1,n denote the second element of β̃n.

Then β̃1,n = β1 for any choice of δn > 0.

Proof. Note first that, for every δ > 0, pA(x; δ) ∈ (0, 1) for almost every x ∈ {x′ ∈ X :

A(x′) ∈ (0, 1)}, since by almost everywhere continuity of A, for almost every x ∈ {x′ ∈ X :

A(x′) ∈ (0, 1)}, there exists an open ball B ⊂ B(x, δ) such that A(x′) ∈ (0, 1) for every

x′ ∈ B. After a few lines of algebra, we have

det(E[Z̃iD̃
′
iIi]) = Pr(Ii = 1)2Var(A(Xi)|Ii = 1)E[Di(Zi −A(Xi))Ii]

= Pr(Ii = 1)2Var(A(Xi)|Ii = 1)E[A(Xi)(1−A(Xi))(Di(1)−Di(0))Ii]

= Pr(Ii = 1)2Var(A(Xi)|Ii = 1)E[A(Xi)(1−A(Xi))(Di(1)−Di(0))],

where the last equality holds since pA(x; δ) ∈ (0, 1) for almost every x ∈ {x′ ∈ X : A(x′) ∈
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(0, 1)}. By the law of total conditional variance,

Var(A(Xi)|Ii = 1)

= E[Var(A(Xi)|Ii = 1, IAi )|Ii = 1] + Var(E[A(Xi)|Ii = 1, IAi ]|Ii = 1)

≥
∑

t∈{0,1}

Var(A(Xi)|Ii = 1, IAi = t) Pr(IAi = t|Ii = 1)

≥ Var(A(Xi)|Ii = 1, IAi = 1) Pr(IAi = 1|Ii = 1)

= Var(A(Xi)|IAi = 1) Pr(IAi = 1|Ii = 1)

> 0.

Therefore, E[Z̃iD̃
′
iIi] is invertible. Another few lines of algebra gives

(E[Z̃iD̃
′
iIi])

−1 =
1

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]


∗ ∗ ∗

0 1 −1

∗ ∗ ∗

 .

It follows that

β̃1,n =
E[ZiYiIi]− E[A(Xi)YiIi]

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]

=
E[A(Xi)(1−A(Xi))(Di(1)−Di(0))(Yi(1)− Yi(0))Ii]

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]

=
E[A(Xi)(1−A(Xi))(Di(1)−Di(0))(Yi(1)− Yi(0))]

E[A(Xi)(1−A(Xi))(Di(1)−Di(0))]

= β1.
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We can write

√
n(β̂c − β̃n) = (

1

n

n∑
i=1

ZiD
′
iIi)
−1 1√

n

n∑
i=1

ZiYiIi − (
1

n

n∑
i=1

Z̃iD̃
′
iIi)
−1 1√

n

n∑
i=1

Z̃iYiIi︸ ︷︷ ︸
=(A)

+ (
1

n

n∑
i=1

Z̃iD̃
′
iIi)
−1 1√

n

n∑
i=1

Z̃iYiIi − (E[Z̃iD̃
′
iIi])

−1√nE[Z̃iYiIi]︸ ︷︷ ︸
=(B)

.

We first consider (B). Let ε̃i,n = Yi − D̃′iβ̃n so that

E[Z̃iε̃i,nIi] = E[Z̃i(Yi − D̃′iβ̃n)Ii] = E[Z̃iYiIi]− E[Z̃iD̃
′
iIi]β̃n = 0.

Then

(B) = (
1

n

n∑
i=1

Z̃iD̃
′
iIi)
−1 1√

n

n∑
i=1

Z̃i(D̃
′
iβ̃n + ε̃i,n)Ii − (E[Z̃iD̃

′
iIi])

−1√nE[Z̃i(D̃
′
iβ̃n + ε̃i,n)Ii]

=
√
n(β̃n − β̃n) + (

1

n

n∑
i=1

Z̃iD̃
′
iIi)
−1 1√

n

n∑
i=1

Z̃iε̃i,nIi − (E[Z̃iD̃
′
iIi])

−1√nE[Z̃iε̃i,nIi]

= (
1

n

n∑
i=1

Z̃iD̃
′
iIi)
−1 1√

n

n∑
i=1

Z̃iε̃i,nIi.

Step 2. Let β = (E[Z̃iD̃
′
iI
A
i ])−1E[Z̃iYiI

A
i ] and ε̃i = Yi − D̃′iβ. Then

1√
n

n∑
i=1

Z̃iε̃i,nIi
d−→ N (0, E[ε̃2i Z̃iZ̃

′
iI
A
i ]).

Proof. We use the triangular-array Lyapunov CLT and the Cramér-Wold device. Pick a

nonzero λ ∈ Rp, and let Vi,n = 1√
n
λ′Z̃iε̃i,nIi. First, we have

n∑
i=1

E[V 2
i,n] = λ′E[ε̃2i,nZ̃iZ̃

′
iIi]λ.

By Lemma 2.B.6,

β̃n → (E[Z̃iD̃
′
iI
A
i ])−1E[Z̃iYiI

A
i ]
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as n→∞. We have

E[ε̃2i,nZ̃iZ̃
′
iIi] = E[(Yi − D̃′iβ̃n)2Z̃iZ̃

′
iIi]

= E[(ε̃i − D̃′i(β̃n − β))2Z̃iZ̃
′
iIi]

= E[ε̃2i Z̃iZ̃
′
iIi]− 2E[ε̃i((β̃0,n − β0) +Di(β̃1,n − β1) +A(Xi)(β̃2,n − β2))Z̃iZ̃

′
iIi]

+ E[((β̃0,n − β0) +Di(β̃1,n − β1) +A(Xi)(β̃2,n − β2))2Z̃iZ̃
′
iIi]

→ E[ε̃2i Z̃iZ̃
′
iI
A
i ]

as n→∞, where the convergence follows from Lemma 2.B.6 and from the fact that β̃n → β.

Therefore,
n∑
i=1

E[V 2
i,n]→ λ′E[ε̃2i Z̃iZ̃

′
iI
A
i ]λ.

We next verify the Lyapunov condition: for some t > 0,

n∑
i=1

E[|Vi,n|2+t]→ 0.

We have

n∑
i=1

E[|Vi,n|4] =
1

n
E[|λ′Z̃iε̃i,nIi|4].

We use the cr-inequality: E[|X + Y |r] ≤ 2r−1E[|X|r + |Y |r] for r ≥ 1. Repeating using the

cr-inequality gives

E[|λ′Z̃iε̃i,nIi|4] = E[|λ′Z̃i(Yi − β̃0,n − β̃1,nDi − β̃2,nA(Xi))|4Ii]

≤ 23cE[(|λ′Z̃i|4)(|Yi|4 + |β̃0,n|4 + |β̃1,n|4Di + |β̃2,n|4A(Xi)
4)Ii]

≤ 23c(|λ1|+ |λ2|+ |λ3|)4(E[Y 4
i ] + β̃4

0,n + β̃4
1,n + β̃4

2,n)

for some finite constant c, and the right-hand side converges to

23c(|λ1|+ |λ2|+ |λ3|)4(E[Y 4
i ] + β̃4

0 + β̃4
1 + β̃4

2),
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which is finite under Assumption 2.3 (a). Therefore,

n∑
i=1

E[|Vi,n|4]→ 0,

and the conclusion follows from the Lyapunov CLT and the Cramér-Wold device.

We next consider (A). We can write

(A) = (
1

n

n∑
i=1

ZiD
′
iIi)
−1 1√

n

n∑
i=1

(ZiYiIi − Z̃iYiIi)

− (
1

n

n∑
i=1

ZiD
′
iIi)
−1[

1√
n

n∑
i=1

(ZiD
′
iIi − Z̃iD̃

′
iIi)](

1

n

n∑
i=1

Z̃iD̃
′
iIi)
−1 1

n

n∑
i=1

Z̃iYiIi.

Step 3. Let {Vi}∞i=1 be i.i.d. random variables such that E[|Vi|] < ∞ and that E[Vi|Xi] is

bounded on N(D∗, δ′) ∩ X for some δ′ > 0. Then,

E[Vip
A(Xi; δ)

l(pA(Xi; δ)−A(Xi))1{pA(Xi; δ) ∈ (0, 1)}] = O(δ)

for l = 0, 1.

Proof. For every x /∈ N(D∗, δ), B(x, δ) ∩ D∗ = ∅, so A is continuously differentiable on

B(x, δ). By the mean value theorem, for every x /∈ N(D∗, δ) and a ∈ B(0, δ),

A(x+ a) = A(x) +∇A(y(x, a))′a

for some point y(x, a) on the line segment connecting x and x+ a. For every x /∈ N(D∗, δ),

pA(x; δ) =

∫
B(0,1)A(x+ δu)du∫

B(0,1) du

=

∫
B(0,1)(A(x) + δ∇A(y(x, δu))′u)du∫

B(0,1) du

= A(x) + δ

∫
B(0,1)∇A(y(x, δu))′udu∫

B(0,1) du
.
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Now, we can write

E[Vip
A(Xi; δ)

l(pA(Xi; δ)−A(Xi))1{pA(Xi; δ) ∈ (0, 1)}]

= E[Vip
A(Xi; δ)

l(pA(Xi; δ)−A(Xi))1{pA(Xi; δ) ∈ (0, 1)}1{Xi /∈ N(D∗, δ)}]

+ E[Vip
A(Xi; δ)

l(pA(Xi; δ)−A(Xi))1{pA(Xi; δ) ∈ (0, 1)}1{Xi ∈ N(D∗, δ)}].

For the first term,

|E[Vip
A(Xi; δ)

l(pA(Xi; δ)−A(Xi))1{pA(Xi; δ) ∈ (0, 1)}1{Xi /∈ N(D∗, δ)}]|

= δ|E[Vip
A(Xi; δ)

l

∫
B(0,1)∇A(y(Xi, δu))′udu∫

B(0,1) du
1{pA(Xi; δ) ∈ (0, 1)}1{Xi /∈ N(D∗, δ)}]|

≤ δE[|Vi|pA(Xi; δ)
l

∫
B(0,1)

∑p
k=1 |

∂A(y(Xi,δu))
∂xk

||uk|du∫
B(0,1) du

1{pA(Xi; δ) ∈ (0, 1)}1{Xi /∈ N(D∗, δ)}]

≤ δE[|Vi|]
p∑

k=1

sup
x∈C∗

∣∣∣∣∂A(x)

∂xk

∣∣∣∣
∫
B(0,1) |uk|du∫
B(0,1) du

= O(δ),

where we use the assumption that the partial derivatives of A is bounded on C∗. For the

second term, for sufficiently small δ > 0,

|E[Vip
A(Xi; δ)

l(pA(Xi; δ)−A(Xi))1{pA(Xi; δ) ∈ (0, 1)}1{Xi ∈ N(D∗, δ)}]|

≤ E[|E[Vi|Xi]|1{Xi ∈ N(D∗, δ)}]

≤ CE[1{Xi ∈ N(D∗, δ)}]

= C Pr(Xi ∈ N(D∗, δ))

= O(δ),

where C is some constant, the second inequality follows from the assumption that E[Vi|Xi]

is bounded on N(D∗, δ′)∩X for some δ′ > 0, and the last equality follows from Assumption

2.4 (a).

Step 4. 1√
n

∑n
i=1(ZiYiIi − Z̃iYiIi) = op(1) and 1√

n

∑n
i=1(ZiD

′
iIi − Z̃iD̃

′
iIi) = op(1).
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Proof. We only show that 1√
n

∑n
i=1(pA(Xi; δn)2 − A(Xi)

2)Ii = op(1). The proofs for the

other elements are similar. As for bias,

E[
1√
n

n∑
i=1

(pA(Xi; δn)2 −A(Xi)
2)Ii]

=
√
nE[(pA(Xi; δn)2 −A(Xi)

2)Ii]

=
√
nE[(pA(Xi; δn) +A(Xi))(p

A(Xi; δn)−A(Xi))Ii]

=
√
nO(δn)

= 0,

where the third equality follows from Step 3 and the last from the assumption that nδ2
n → 0.

As for variance, by Lemma 2.B.6,

Var(
1√
n

n∑
i=1

(pA(Xi; δn)2 −A(Xi)
2)Ii)

≤ E[(pA(Xi; δn)2 −A(Xi)
2)2Ii]

= E[(pA(Xi; δn)4 − 2pA(Xi; δn)2A(Xi)
2 +A(Xi)

4)Ii]

→ E[(A(Xi)
4 − 2A(Xi)

2A(Xi)
2 +A(Xi)

4)IAi ]

= 0.

Step 5. nΣ̂c p−→ (E[Z̃iD̃
′
iI
A
i ])−1E[ε̃2i Z̃iZ̃

′
iI
A
i ](E[D̃iZ̃

′
iI
A
i ])−1.
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Proof. Let εi = Yi −D′iβ. We have

1

n

n∑
i=1

ε̂2iZiZ
′
iIi =

1

n

n∑
i=1

(Yi −D′iβ̂
c)2ZiZ

′
iIi

=
1

n

n∑
i=1

(εi −D′i(β̂
c − β))2ZiZ

′
iIi

=
1

n

n∑
i=1

ε2iZiZ
′
iIi

− 2

n

n∑
i=1

(Yi −D′iβ)((β̂c0 − β0) +Di(β̂
c
1 − β1) + pA(Xi; δn)(β̂c2 − β2))ZiZ

′
iIi

+
1

n

n∑
i=1

((β̂c0 − β0) +Di(β̂
c
1 − β1) + pA(Xi; δn)(β̂c2 − β2))2ZiZ

′
iIi

=
1

n

n∑
i=1

ε2iZiZ
′
iIi + op(1)Op(1),

where the last equality follows from the result that β̂c − β = op(1) and from Lemma 2.B.6.

Again by Lemma 2.B.6,

1

n

n∑
i=1

ε2iZiZ
′
iIi =

1

n

n∑
i=1

(Y 2
i − 2YiD

′
iβ + β′DiD

′
iβ)ZiZ

′
iIi

p−→ E[(Y 2
i − 2YiD̃

′
iβ + β′D̃iD̃

′
iβ)Z̃iZ̃

′
iI
A
i ]

= E[ε̃2i Z̃iZ̃
′
iI
A
i ],

and
1

n

n∑
i=1

ZiD
′
iIi

p−→ E[Z̃iD̃
′
iI
A
i ].

The conclusion then follows.

Step 6. (σ̂c)−1(β̂c1 − β1)
d−→ N (0, 1).

Proof. By combining the results from Steps 2–4 and by Lemma 2.B.6,

(A)
p−→ 0,

(B)
d−→ N (0, (E[Z̃iD̃

′
iI
A
i ])−1E[ε̃2i Z̃iZ̃

′
iI
A
i ](E[D̃iZ̃

′
iI
A
i ])−1),
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and therefore,

√
n(β̂c − β̃n)

d−→ N (0, (E[Z̃iD̃
′
iI
A
i ])−1E[ε̃2i Z̃iZ̃

′
iI
A
i ](E[D̃iZ̃

′
iI
A
i ])−1).

The conclusion then follows from Steps 1 and 5.

2.C.4.2 Consistency and Asymptotic Normality of β̂s1 When

Pr(A(Xi) ∈ (0, 1)) > 0

Let Isi = 1{ps(Xi; δn) ∈ (0, 1)}, Ds
i = (1, Di, p

s(Xi; δn))′ and Zsi = (1, Zi, p
s(Xi; δn))′. Let

β̂c,s = (
n∑
i=1

Zsi (D
s
i )
′Isi )−1

n∑
i=1

ZsiYiI
s
i

and

Σ̂c,s = (

n∑
i=1

Zsi (D
s
i )
′Isi )−1(

n∑
i=1

(ε̂si )
2Zsi (Z

s
i )
′Isi )(

n∑
i=1

Ds
i (Z

s
i )
′Isi )−1,

where ε̂si = Yi − (Ds
i )
′β̂c,s. Here, we only show that β̂c,s1

p−→ β1 if Sn → ∞ and that

(σ̂s)−1(β̂c,s1 − β1)
d−→ N (0, 1) if Assumption 2.5 holds when Var(A(Xi)|IAi = 1) > 0. For

that, it suffices to show that

β̂c,s − β̂c = op(1)

if Sn →∞ and that

√
n(β̂c,s − β̂c) = op(1),

nΣ̂c,s p−→ (E[Z̃iD̃
′
iI
A
i ])−1E[ε̃2i Z̃iZ̃

′
iI
A
i ](E[D̃iZ̃

′
iI
A
i ])−1
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if Assumption 2.5 holds. We have

β̂c,s − β̂c = (
1

n

n∑
i=1

Zsi (D
s
i )
′Isi )−1 1

n

n∑
i=1

ZsiYiI
s
i − (

1

n

n∑
i=1

ZiD
′
iIi)
−1 1

n

n∑
i=1

ZiYiIi

= (
1

n

n∑
i=1

Zsi (D
s
i )
′Isi )−1(

1

n

n∑
i=1

ZsiYiI
s
i −

1

n

n∑
i=1

ZiYiIi)− (
1

n

n∑
i=1

Zsi (D
s
i )
′Isi )−1

× (
1

n

n∑
i=1

Zsi (D
s
i )
′Isi −

1

n

n∑
i=1

ZiD
′
iIi)(

1

n

n∑
i=1

ZiD
′
iIi)
−1 1

n

n∑
i=1

ZiYiIi.

By Lemma 2.B.8, β̂c,s − β̂c = op(1) if Sn → ∞, and
√
n(β̂c,s − β̂c) = op(1) under the

boundedness imposed by Assumption 2.4 (c) if Assumption 2.5 holds.

By proceeding as in Step 5 in Section 2.C.4.1, we have

1

n

n∑
i=1

(ε̂si )
2Zsi (Z

s
i )
′Isi =

1

n

n∑
i=1

(εsi )
2Zsi (Z

s
i )
′Isi + op(1),

where εsi = Yi − (Ds
i )
′β. Then, by Lemma 2.B.8,

1

n

n∑
i=1

(ε̂si )
2Zsi (Z

s
i )
′Isi −

1

n

n∑
i=1

ε2iZiZ
′
iIi =

1

n

n∑
i=1

(Y 2
i − 2Yi(D

s
i )
′β + β′Ds

i (D
s
i )
′β)Zsi (Z

s
i )
′Isi

− 1

n

n∑
i=1

(Y 2
i − 2YiD

′
iβ + β′DiD

′
iβ)ZiZ

′
iIi + op(1)

= op(1)

so that
1

n

n∑
i=1

(ε̂si )
2Zsi (Z

s
i )
′Isi

p−→ E[ε̃2i Z̃iZ̃
′
iI
A
i ].

Also, 1
n

∑n
i=1 Zsi (D

s
i )
′Isi

p−→ E[Z̃iD̃
′
iI
A
i ] by using Lemma 2.B.8. The conclusion then follows.
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2.C.4.3 Consistency and Asymptotic Normality of β̂1 When

Pr(A(Xi) ∈ (0, 1)) = 0

Since Pr(A(Xi) ∈ (0, 1)) = 0, In = 0 with probability one. Hence,

β̂ = (

n∑
i=1

ZiD
′
iIi)
−1

n∑
i=1

ZiYiIi

with probability one. We use the notation and results provided in Appendix 2.B. By Lemma

2.B.5, under Assumption 2.3 (d), there exists µ > 0 such that dsΩ∗ is twice continuously

differentiable on N(∂Ω∗, µ) and that

∫
N(∂Ω∗,δ)

g(x)dx =

∫ δ

−δ

∫
∂Ω∗

g(u+ λνΩ∗(u))J∂Ω∗
p−1ψΩ∗(u, λ)dHp−1(u)dλ

for every δ ∈ (0, µ) and every function g : Rp → R that is integrable on N(∂Ω∗, δ).

Below we show that β̂1
p−→ β1 if nδn →∞ and δn → 0 and that σ̂−1(β̂1−β1)

d−→ N (0, 1)

if nδ3
n → 0 in addition. The proof proceeds in eight steps.

Step 1. There exist δ̄ > 0 and a bounded function r : ∂Ω∗ ∩N(X , δ̄)× (−1, 1)× (0, δ̄)→ R

such that

pA(u+ δvνΩ∗(u); δ) = k(v) + δr(u, v, δ)

for every (u, v, δ) ∈ ∂Ω∗ ∩N(X , δ̄)× (−1, 1)× (0, δ̄), where

k(v) =


1− 1

2I(1−v2)(
p+1

2 , 1
2) for v ∈ [0, 1)

1
2I(1−v2)(

p+1
2 , 1

2) for v ∈ (−1, 0).

Here Ix(α, β) is the regularized incomplete beta function (the cumulative distribution function

of the beta distribution with shape parameters α and β).

Proof. By Assumption 2.3 (e) (ii), there exists δ̄ ∈ (0, µ2 ) such that A(x) = 0 for almost

every x ∈ N(X , 3δ̄)\Ω∗. By Taylor’s theorem, for every u ∈ ∂Ω∗∩N(X , δ̄) and a ∈ B(0, 2δ̄),

dsΩ∗(u+ a) = dsΩ∗(u) +∇dsΩ∗(u)′a+ a′R(u, a)a,
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where

R(u, a) =

∫ 1

0
(1− t)D2dsΩ∗(u+ ta)dt.

Since D2dsΩ∗ is continuous and cl(N(∂Ω∗, 2δ̄)) is bounded and closed, D2dsΩ∗ is bounded on

cl(N(∂Ω∗, 2δ̄)). Therefore, R(·, ·) is bounded on ∂Ω∗ ∩ N(X , δ̄) × B(0, 2δ̄). It also follows

that

dsΩ∗(u+ a) = νΩ∗(u)′a+ a′R(u, a)a,

since dsΩ∗(u) = 0 and ∇dsΩ∗(u) = νΩ∗(u) for every u ∈ ∂Ω∗∩N(X , 2δ̄) by Lemma 2.B.1. For

(u, v, δ) ∈ ∂Ω∗ ∩N(X , δ̄)× (−1, 1)× (0, δ̄),

pA(u+ δvνΩ∗(u); δ)

=

∫
B(0,1)

A(u+ δvνΩ∗(u) + δw)dw∫
B(0,1)

dw

=

∫
B(0,1)

1{u+ δvνΩ∗(u) + δw ∈ Ω∗}dw
Volp

=

∫
B(0,1)

1{dsΩ∗(u+ δ(vνΩ∗(u) + w)) ≥ 0)}dw
Volp

=

∫
B(0,1)

1{δνΩ∗(u)′(vνΩ∗(u) + w) + δ2(vνΩ∗(u) + w)′R(u, δ(vνΩ∗(u) + w))(vνΩ∗(u) + w) ≥ 0}dw
Volp

,

where Volp denotes the volume of the p-dimensional unit ball, and the second equality

follows since u+ δvνΩ∗(u) + δw ∈ N(X , 3δ̄) and hence A(u+ δvνΩ∗(u) + δw) = 0 for almost

every w ∈ B(0, 1) such that u+ δvνΩ∗(u) + δw /∈ Ω∗. Observe that

1{δνΩ∗(u)′(vνΩ∗(u) + w) + δ2(vνΩ∗(u) + w)′R(u, δ(vνΩ∗(u) + w))(vνΩ∗(u) + w) ≥ 0}

= 1{v + νΩ∗(u) · w + δ(vνΩ∗(u) + w)′R(u, δ(vνΩ∗(u) + w))(vνΩ∗(u) + w) ≥ 0}

= 1{v + νΩ∗(u) · w ≥ 0}

− 1{v + νΩ∗(u) · w ≥ 0, v + νΩ∗(u) · w + δ(vνΩ∗(u) + w)′R(u, δ(vνΩ∗(u) + w))(vνΩ∗(u) + w) < 0}︸ ︷︷ ︸
=a(u,v,w,δ)

+ 1{v + νΩ∗(u) · w < 0, v + νΩ∗(u) · w + δ(vνΩ∗(u) + w)′R(u, δ(vνΩ∗(u) + w))(vνΩ∗(u) + w) ≥ 0}︸ ︷︷ ︸
=b(u,v,w,δ)

.

Note that the set {w ∈ B(0, 1) : v+ ν(u) ·w ≥ 0} is a region of the p-dimensional unit ball

cut off by the plane {w ∈ Rp : v + ν(u) · w = 0}. The distance from the center of the unit
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ball to the plane is |v|. Using the formula for the volume of a hyperspherical cap (see e.g.

Li (2011)), we have

∫
B(0,1)

1{v + ν(u) · w ≥ 0}dw =


Volp − 1

2VolpI(2(1−v)−(1−v)2)(
p+1

2 , 1
2) for v ∈ [0, 1)

1
2VolpI(2(1+v)−(1+v)2)(

p+1
2 , 1

2) for v ∈ (−1, 0).

Therefore, for every (u, v, δ) ∈ ∂Ω∗ ∩N(X , δ̄)× (−1, 1)× (0, δ̄),

pA(u+ δvνΩ∗(u); δ) = k(v) +

∫
B(0,1)(−a(u, v, w, δ) + b(u, v, w, δ))dw

Volp
.

Now let r(u, v, δ) = δ−1(pA(u+ δvνΩ∗(u); δ)− k(v)). Since R(·, ·) is bounded on ∂Ω∗ ∩

N(X , δ̄)×B(0, 2δ̄) and ‖νΩ∗(u)‖ = 1, there exists r̄ > 0 such that

|(vνΩ∗(u) + w)′R(u, δ(vνΩ∗(u) + w))(vνΩ∗(u) + w)| ≤ r̄

for every (u, v, w, δ) ∈ ∂Ω∗ ∩N(X , δ̄)× (−1, 1)×B(0, 1)× (0, δ̄). Therefore,

0 ≤ a(u, v, w, δ) ≤ 1{0 ≤ v + νΩ∗(u) · w < δr̄}

and

0 ≤ b(u, v, w, δ) ≤ 1{−δr̄ ≤ v + νΩ∗(u) · w < 0}.

It then follows that

−

∫
B(0,1) 1{0 ≤ v + νΩ∗(u) · w < δr̄}dw

Volp
≤

∫
B(0,1)(−a(u, v, w, δ) + b(u, v, w, δ))dw

Volp

≤

∫
B(0,1) 1{−δr̄ ≤ v + νΩ∗(u) · w < 0}dw

Volp
.

The set {w ∈ B(0, 1) : 0 ≤ v + νΩ∗(u) · w < δr̄} is a region of the p-dimensional unit ball

cut off by the two planes {w ∈ Rp : v + νΩ∗(u) ·w = 0} and {w ∈ Rp : v + νΩ∗(u) ·w = δr̄}.

Its Lebesgue measure is at most the volume of the (p − 1)-dimensional unit ball times the
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distance between the two planes, so

−δVolp−1r̄ ≤ −
∫
B(0,1)

1{0 ≤ v + νΩ∗(u) · w < δr̄}dw.

Likewise, ∫
B(0,1)

1{−δr̄ ≤ v + νΩ∗(u) · w < 0}dw ≤ δVolp−1r̄.

Therefore,

−δVolp−1r̄

Volp
≤

∫
B(0,1)(−a(u, v, w, δ) + b(u, v, w, δ))dw

Volp
≤ δVolp−1r̄

Volp
.

It follows that

r(u, v, δ) = δ−1

∫
B(0,1)(−a(u, v, w, δ) + b(u, v, w, δ))dw

Volp

∈ [−Volp−1r̄

Volp
,
Volp−1r̄

Volp
],

and hence r is bounded on ∂Ω∗ ∩N(X , δ̄)× (−1, 1)× (0, δ̄).

Step 2. For every (u, v, δ) ∈ ∂Ω∗ ∩N(X , δ̄)× (−1, 1)× (0, δ̄), pA(u+ δvνΩ∗(u); δ) ∈ (0, 1).

Proof. Fix (u, v, δ) ∈ ∂Ω∗ ∩ N(X , δ̄) × (−1, 1) × (0, δ̄). Let ε ∈ (0, δ(1 − |v|)). Note that

B(u, ε) ⊂ B(u+ δvνΩ∗(u), δ), since for any x ∈ B(u, ε), ‖u+ δvνΩ∗(u)− x‖ ≤ ‖δvνΩ∗(u)‖+

‖u− x‖ ≤ δ|v|+ ε < δ. By Step 1, pA(u) = limδ′→0 p
A(u; δ′) = k(0) = 1

2 . This implies that

there exists ε′ ∈ (0, ε) such that pA(u; ε′) ∈ (0, 1). It then follows that 0 < Lp(B(u, ε′)∩Ω∗) ≤

Lp(B(u, ε)∩Ω∗) ≤ Lp(B(u+δvνΩ∗(u), δ)∩Ω∗) and that 0 < Lp(B(u, ε′)\Ω∗) ≤ Lp(B(u, ε)\

Ω∗) ≤ Lp(B(u+δvνΩ∗(u), δ)\Ω∗). Therefore, pA(u+δvνΩ∗(u); δ) = Lp(B(u+δvνΩ∗ (u),δ)∩Ω∗)
Lp(B(u+δvνΩ∗ (u),δ)) ∈

(0, 1).

Step 3. Let g : Rp → R be a function that is bounded on N(∂Ω∗, δ′) ∩ N(X , δ′) for some

δ′ > 0. Then, for l ≥ 0, there exist δ̃ > 0 and constant C > 0 such that

|δ−1E[pA(Xi; δ)
lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}]| ≤ C

187



for every δ ∈ (0, δ̃). If g is continuous on N(∂Ω∗, δ′) ∩N(X , δ′) for some δ′ > 0, then

δ−1E[pA(Xi; δ)
lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}] =

∫ 1

−1
k(v)ldv

∫
∂Ω∗

g(x)fX(x)dHp−1(x) + o(1)

δ−1E[Zip
A(Xi; δ)

lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}] =

∫ 1

0
k(v)ldv

∫
∂Ω∗

g(x)fX(x)dHp−1(x) + o(1)

for l ≥ 0. Furthermore, if g is continuously differentiable and ∇g is bounded on N(∂Ω∗, δ′)∩

N(X , δ′) for some δ′ > 0, then

δ−1E[pA(Xi; δ)
lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}] =

∫ 1

−1
k(v)ldv

∫
∂Ω∗

g(x)fX(x)dHp−1(x) +O(δ)

δ−1E[Zip
A(Xi; δ)

lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}] =

∫ 1

0
k(v)ldv

∫
∂Ω∗

g(x)fX(x)dHp−1(x) +O(δ)

for l ≥ 0.

Proof. Let δ̄ be given in Step 1. Under Assumption 2.3 (f), there exists δ̃ ∈ (0, δ̄) such

that fX is bounded, is continuously differentiable, and has bounded partial derivatives

on N(∂Ω∗, 2δ̃) ∩ N(X , 2δ̃). Let δ̃ ∈ (0, δ̄) be such that both g and fX are bounded on

N(∂Ω∗, 2δ̃) ∩ N(X , 2δ̃). We first show that pA(x; δ) ∈ {0, 1} for every x ∈ X \ N(∂Ω∗, δ)

for every δ ∈ (0, δ̃). Pick x ∈ X \N(∂Ω∗, δ) and δ ∈ (0, δ̃). Since B(x, δ) ∩ ∂Ω∗ = ∅, either

B(x, δ) ⊂ int(Ω∗) or B(x, δ) ⊂ int(Rp \Ω∗). If B(x, δ) ⊂ int(Ω∗), pA(x; δ) = 1. If B(x, δ) ⊂

int(Rp \Ω∗), pA(x; δ) = 0, since A(x′) = 0 for almost every x′ ∈ B(x, δ) ⊂ N(X , 3δ̄) \Ω∗ by

the choice of δ̄. Therefore, {x ∈ X : pA(x; δ) ∈ (0, 1)} ⊂ N(∂Ω∗, δ) for every δ ∈ (0, δ̃). By

this and Lemma 2.B.5, for δ ∈ (0, δ̃),

δ−1E[pA(Xi; δ)
lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}]

= δ−1

∫
pA(x; δ)lg(x)1{pA(x; δ) ∈ (0, 1)}fX(x)dx

= δ−1

∫
N(∂Ω∗,δ)

pA(x; δ)lg(x)1{pA(x; δ) ∈ (0, 1)}fX(x)dx

= δ−1

∫ δ

−δ

∫
∂Ω∗

pA(u+ λνΩ∗(u); δ)lg(u+ λνΩ∗(u))1{pA(u+ λνΩ∗(u); δ) ∈ (0, 1)}

× fX(u+ λνΩ∗(u))J∂Ω∗
p−1ψΩ∗(u, λ)dHp−1(u)dλ.
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With change of variables v = λ
δ , we have

δ−1E[pA(Xi; δ)
lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}]

=

∫ 1

−1

∫
∂Ω∗

pA(u+ δvνΩ∗(u); δ)l1{pA(u+ δvνΩ∗(u); δ) ∈ (0, 1)}

× g(u+ δvνΩ∗(u))fX(u+ δvνΩ∗(u))J∂Ω∗
p−1ψΩ∗(u, δv)dHp−1(u)dv.

For every (u, v, δ) ∈ ∂Ω∗ \N(X , δ̃)× (−1, 1)× (0, δ̃), u+ δvνΩ∗(u) /∈ X , so

δ−1E[pA(Xi; δ)
lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}]

=

∫ 1

−1

∫
∂Ω∗∩N(X ,δ̃)

pA(u+ δvνΩ∗(u); δ)l1{pA(u+ δvνΩ∗(u); δ) ∈ (0, 1)}g(u+ δvνΩ∗(u))

× fX(u+ δvνΩ∗(u))J∂Ω∗
p−1ψΩ∗(u, δv)dHp−1(u)dv

=

∫ 1

−1

∫
∂Ω∗∩N(X ,δ̃)

(k(v) + δr(u, v, δ))lg(u+ δvνΩ∗(u))

× fX(u+ δvνΩ∗(u))J∂Ω∗
p−1ψΩ∗(u, δv)dHp−1(u)dv,

where the second equality follows from Steps 1 and 2. By Lemma 2.B.5, J∂Ω∗
p−1ψΩ∗(·, ·) is

bounded on ∂Ω∗ × (−δ̃, δ̃). Since r, g and fX are also bounded, for some constant C > 0,

|δ−1E[pA(Xi; δ)
lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}]| ≤ C

∫ 1

−1

∫
∂Ω∗∩N(X ,δ̃)

dHp−1(u)dv,

which is finite by Assumption 2.3 (e) (i). Moreover, if g and fX are continuous on

N(∂Ω∗, 2δ̃) ∩N(X , 2δ̃), by the Dominated Convergence Theorem,

δ−1E[pA(Xi; δ)
lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}]→

∫ 1

−1
k(v)ldv

∫
∂Ω∗

g(u)fX(u)dHp−1(u),

where we use the fact from Lemma 2.B.5 that J∂Ω∗
p−1ψΩ∗(u, λ) is continuous in λ and

J∂Ω∗
p−1ψΩ∗(u, 0) = 1.

Note that A(x) = 1 for every x ∈ Ω∗ and A(x) = 0 for almost every x ∈ N(X , 2δ̃) \ Ω∗.

Also, for every (u, v, δ) ∈ ∂Ω∗ ∩ N(X , δ̃) × (−1, 1) × (0, δ̃), u + δvνΩ∗(u) ∈ Ω∗ if v ∈ (0, 1)
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and u+ δvνΩ∗(u) ∈ N(X , 2δ̃) \ Ω∗ if v ∈ (−1, 0]. Therefore,

δ−1E[Zip
A(Xi; δ)

lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}]

= δ−1E[A(Xi)p
A(Xi; δ)

lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}]

=

∫ 1

−1

∫
∂Ω∗∩N(X ,δ̃)

A(u+ δvνΩ∗(u))(k(v) + δr(u, v, δ))lg(u+ δvνΩ∗(u))

× fX(u+ δvνΩ∗(u))J∂Ω∗
p−1ψΩ∗(u, δv)dHp−1(u)dv

=

∫ 1

0

∫
∂Ω∗∩N(X ,δ̃)

(k(v) + δr(u, v, δ))lg(u+ δvνΩ∗(u))

× fX(u+ δvνΩ∗(u))J∂Ω∗
p−1ψΩ∗(u, δv)dHp−1(u)dv

→
∫ 1

0
k(v)ldv

∫
∂Ω∗

g(u)fX(u)dHp−1(u).

Now suppose that g and fX are continuously differentiable on N(∂Ω∗, 2δ̃)∩N(X , 2δ̃) and

that ∇g and ∇f are bounded on N(∂Ω∗, 2δ̃) ∩ N(X , 2δ̃). Using the mean-value theorem,

we obtain that, for any (u, v, δ) ∈ ∂Ω∗ ∩N(X , δ̃)× (−1, 1)× (0, δ̃),

g(u+ δvνΩ∗(u)) = g(u) +∇g(yg(u, δvνΩ∗(u)))′δvνΩ∗(u),

fX(u+ δvνΩ∗(u)) = fX(u) +∇fX(yf (u, δvνΩ∗(u)))′δvνΩ∗(u)

for some yg(u, δvνΩ∗(u)) and yf (u, δvνΩ∗(u)) that are on the line segment connecting u and

u+ δvνΩ∗(u). In addition,

J∂Ω∗
p−1ψΩ∗(u, δv) = J∂Ω∗

p−1ψΩ∗(u, 0) +
∂J∂Ω∗

p−1ψΩ∗(u, yJ(u, δv))

∂λ
δv

= 1 +
∂J∂Ω∗

p−1ψΩ∗(u, yJ(u, δv))

∂λ
δv

for some yJ(u, δv) that is on the line segment connecting 0 and δv. By Lemma 2.B.5,
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∂J∂Ω∗
p−1 ψΩ∗ (·,·)

∂λ is bounded on ∂Ω∗ × (−δ̃, δ̃). We then have

δ−1E[pA(Xi; δ)
lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}]

=

∫ 1

−1

∫
∂Ω∗∩N(X ,δ̃)

(k(v) + δr(u, v, δ))l(g(u) +∇g(yg(u, δvνΩ∗(u)))′δvνΩ∗(u))

× (fX(u) +∇fX(yf (u, δvνΩ∗(u)))′δvνΩ∗(u))(1 +
∂J∂Ω∗
p−1 ψΩ∗ (u,yJ (u,δv))

∂λ δv)dHp−1(u)dv

=

∫ 1

−1

∫
∂Ω∗∩N(X ,δ̃)

(k(v)lg(u)fX(u) + δh(u, v, δ))dHp−1(u)dv

=

∫ 1

−1
k(v)ldv

∫
∂Ω∗

g(u)fX(u)dHp−1(u) + δ

∫ 1

−1

∫
∂Ω∗∩N(X ,δ̃)

h(u, v, δ)dHp−1(u)dv

for some function h bounded on ∂Ω∗ ∩N(X , δ̃)× (−1, 1)× (0, δ̃). It then follows that

δ−1E[pA(Xi; δ)
lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}] =

∫ 1

−1
k(v)ldv

∫
∂Ω∗

g(u)fX(u)dHp−1(u) +O(δ).

Also,

δ−1E[Zip
A(Xi; δ)

lg(Xi)1{pA(Xi; δ) ∈ (0, 1)}]

=

∫ 1

0

∫
∂Ω∗∩N(X ,δ̃)

(k(v) + δr(u, v, δ))lg(u+ δvνΩ∗(u))

× fX(u+ δvνΩ∗(u))J∂Ω∗
p−1ψΩ∗(u, δv)dHp−1(u)dv

=

∫ 1

0
k(v)ldv

∫
∂Ω∗

g(u)fX(u)dHp−1(u) +O(δ).

Step 4. Let SD = limδ→0 δ
−1E[ZiD

′
i1{pA(Xi; δ) ∈ (0, 1)}] and SY =

limδ→0 δ
−1E[ZiYi1{pA(Xi; δ) ∈ (0, 1)}]. Then the second element of S−1

D SY is β1.

Proof. Note that Di = ZiDi(1) + (1− Zi)Di(0) and Yi = ZiY1i + (1− Zi)Y0i. By Step 3,

SD =


2f̄X

∫
∂Ω∗ E[Di(1) +Di(0)|Xi = x]fX(x)dHp−1(x)

∫ 1

−1
k(v)dvf̄X

f̄X
∫
∂Ω∗ E[Di(1)|Xi = x]fX(x)dHp−1(x)

∫ 1

0
k(v)dvf̄X∫ 1

−1
k(v)dvf̄X

∫
∂Ω∗(

∫ 1

0
k(v)dvE[Di(1)|Xi = x]

+
∫ 0

−1
k(v)dvE[Di(0)|Xi = x])fX(x)dHp−1(x)

∫ 1

−1
k(v)2dvf̄X


,
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where f̄X =
∫
∂Ω∗ fX(x)dHp−1(x), and

SY =


∫
∂Ω∗ E[Y1i + Y0i|Xi = x]fX(x)dHp−1(x)∫

∂Ω∗ E[Y1i|Xi = x]fX(x)dHp−1(x)∫
∂Ω∗(

∫ 1
0 k(v)dvE[Y1i|Xi = x] +

∫ 0
−1 k(v)dvE[Y0i|Xi = x])fX(x)dHp−1(x)

 .

After a few lines of algebra, we have

det(SD) =f̄2
X

∫
∂Ω∗

E[Di(1)−Di(0)|Xi = x]fX(x)dHp−1(x)

× (

∫ 0

−1
(k(v)−

∫ 0

−1
k(s)ds)2dv +

∫ 1

0
(k(v)−

∫ 1

0
k(s)ds)2dv).

We verify that det(SD) is nonzero. Since f̄X > 0 by Assumption 2.3 (e) (i), it suffices to

show that
∫
∂Ω∗ E[Di(1) −Di(0)|Xi = x]fX(x)dHp−1(x) > 0. To do so, we first show that

pA(x) ∈ {0, 1} for every x ∈ X \∂Ω∗. Pick x ∈ X \∂Ω∗. By definition, either x ∈ X ∩ int(Ω∗)

or x ∈ X ∩ (Rp \cl(Ω∗)). If x ∈ X ∩ int(Ω∗), then B(x, δ) ⊂ int(Ω∗) for any sufficiently small

δ > 0 so that pA(x) = 1. If x ∈ X ∩ (Rp \ cl(Ω∗)), then B(x, δ) ⊂ N(X , δ′)∩ (Rp \ cl(Ω∗)) for

any sufficiently small δ > 0, where δ′ > 0 satisfies Assumption 2.3 (e) (ii). Since A(x′) = 0

for almost every x′ ∈ N(X , δ′) \ Ω∗, pA(x) = 0. Note also that pA(x) = limδ→0 p
A(x; δ) =

k(0) = 1
2 for every x ∈ ∂Ω∗ ∩ X by Step 1. It then follows that

∫
∂Ω∗

E[Di(1)−Di(0)|Xi = x]fX(x)dHp−1(x)

= 4

∫
∂Ω∗∩X

pA(x)(1− pA(x))E[Di(1)−Di(0)|Xi = x]fX(x)dHp−1(x)

= 4

∫
X
pA(x)(1− pA(x))E[Di(1)−Di(0)|Xi = x]fX(x)dHp−1(x),

which is nonzero under Assumption 2.3 (b).

After another few lines of algebra, we obtain that the second element of S−1
D SY is

∫
∂Ω∗ E[(Di(1)−Di(0))(Yi(1)− Yi(0))|Xi = x]fX(x)dHp−1(x)∫

∂Ω∗ E[Di(1)−Di(0)|Xi = x]fX(x)dHp−1(x)
.
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On the other hand, by Step 3,

β1 = lim
δ→0

E[ωi(δ)(Yi(1)− Yi(0))]

= lim
δ→0

δ−1E[pA(Xi; δ)(1− pA(Xi; δ))(Di(1)−Di(0))(Yi(1)− Yi(0))1{pA(Xi; δ) ∈ (0, 1)}]
δ−1E[pA(Xi; δ)(1− pA(Xi; δ))(Di(1)−Di(0))1{pA(Xi; δ) ∈ (0, 1)}]

=

∫ 1
−1 k(v)(1− k(v))dv

∫
∂Ω∗ E[(Di(1)−Di(0))(Yi(1)− Yi(0))|Xi = x]fX(x)dHp−1(x)∫ 1

−1 k(v)(1− k(v))dv
∫
∂Ω∗ E[Di(1)−Di(0)|Xi = x]fX(x)dHp−1(x)

=

∫
∂Ω∗ E[(Di(1)−Di(0))(Yi(1)− Yi(0))|Xi = x]fX(x)dHp−1(x)∫

∂Ω∗ E[Di(1)−Di(0)|Xi = x]fX(x)dHp−1(x)
.

Step 5. If nδn →∞ as n→∞, then β̂1
p−→ β1.

Proof. It suffices to verify that the variance of each element of 1
nδn

∑n
i=1 ZiD

′
iIi and

1
nδn

∑n
i=1 ZiY Ii is o(1). Here, we only verify that Var( 1

nδn

∑n
i=1 p

A(Xi; δn)YiIi) = o(1).

Note that

E[Y 2
i |Xi] = E[ZiY

2
1i + (1− Zi)Y 2

0i|Xi] ≤ E[Y 2
1i + Y 2

0i|Xi].

Under Assumption 2.3 (f), there exists δ′ > 0 such that E[Y 2
1i + Y 2

0i|Xi] is continuous on

N(∂Ω∗, δ′). Since cl(N(∂Ω∗, 1
2δ
′)) is closed and bounded, E[Y 2

1i + Y 2
0i|Xi] is bounded on

cl(N(∂Ω∗, 1
2δ
′)). We have

Var(
1

nδn

n∑
i=1

pA(Xi; δn)YiIi) ≤
1

nδn
δ−1
n E[pA(Xi; δn)2Y 2

i Ii]

=
1

nδn
δ−1
n E[pA(Xi; δn)2E[Y 2

i |Xi]Ii]

≤ 1

nδn
C

for some C > 0, where the last inequality follows from Step 3. The conclusion follows since

nδn →∞.
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Now let β = (β0, β1, β2)′ = S−1
D SY and let εi = Yi −D′iβ. We can write

√
nδn(β̂ − β) = (

1

nδn

n∑
i=1

ZiD
′
iIi)
−1 1√

nδn

n∑
i=1

ZiεiIi

= (
1

nδn

n∑
i=1

ZiD
′
iIi)
−1 1√

nδn

n∑
i=1

{(ZiεiIi − E[ZiεiIi]) + E[ZiεiIi]}.

Step 6.
1√
nδn

n∑
i=1

(ZiεiIi − E[ZiεiIi])
d−→ N (0,V),

where V = limn→∞ δ
−1
n E[ε2iZiZiIi].

Proof. We use the triangular-array Lyapunov CLT and the Cramér-Wold device. Pick a

nonzero λ ∈ Rp, and let Vi,n = 1√
nδn

λ′(ZiεiIi − E[ZiεiIi]). First,

n∑
i=1

E[V 2
i,n] = δ−1

n λ′(E[ε2iZiZ
′
iIi]− E[ZiεiIi]E[Z′iεiIi])λ.

By Step 3,

E[ZiεiIi] = E[Zi(Yi −D′iβ)Ii] = O(δn),

so

δ−1
n E[ZiεiIi]E[Z′iεiIi] = o(1).

We have

E[ε2iZiZ
′
iIi] = E[(Yi − β0 − β1Di − β2p

A(Xi; δn))2ZiZ
′
iIi]

= E[Zi(Y1i − β0 − β1Di(1)− β2p
A(Xi; δn))2ZiZ

′
iIi]

+ E[(1− Zi)(Y0i − β0 − β1Di(0)− β2p
A(Xi; δn))2ZiZ

′
iIi].

Since E[Y1i|Xi], E[Y0i|Xi], E[Di(1)|Xi], E[Di(0)|Xi], E[Y 2
1i|Xi], E[Y 2

0i|Xi], E[Y1iDi(1)|Xi]

and E[Y0iDi(0)|Xi] are continuous on N(∂Ω∗, δ′) for some δ′ > 0 under Assumption 2.3 (f),

limn→∞ δ
−1
n E[ε2iZiZ

′
iIi] exists and finite. Therefore,

n∑
i=1

E[V 2
i,n]→ λ′Vλ < 0.
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We next verify the Lyapunov condition: for some t > 0,

n∑
i=1

E[|Vi,n|2+t]→ 0.

We have

n∑
i=1

E[|Vi,n|4] =
1

nδn
δ−1
n E[|λ′(ZiεiIi − E[ZiεiIi])|4]

≤ 1

nδn
23cδ−1

n {E[|λ′ZiεiIi|4] + |λ′E[ZiεiIi]|4}

by the cr-inequality. Repeating using the cr-inequality gives

δ−1
n E[|λ′ZiεiIi|4] = δ−1

n E[|λ′Zi(Yi − β0 − β1Di − β2p
A(Xi; δn))|4Ii]

≤ 23cδ−1
n E[(|λ′Zi|4)(|Yi|4 + |β0|4 + |β1|4Di + |β2|4pA(Xi; δn)4)Ii]

≤ 23c(|λ1|+ |λ2|+ |λ3|)4δ−1
n E[(Y 4

i + β4
0 + β4

1 + β4
2)Ii]

= 23cO(1)

for some finite constant c, where the last equality holds by Step 3 under Assumption 2.3 (f).

Moreover,

δ−1
n |λ′E[ZiεiIi]|4 = δ3

n|λ′δ−1
n E[ZiεiIi]|4

= δ3
nO(1)

= o(1).

Therefore, when nδn →∞,
n∑
i=1

E[|Vi,n|4]→ 0,

and the conclusion follows from the Lyapunov CLT and the Cramér-Wold device.

Step 7. nδnΣ̂
p−→ S−1

D V(S′D)−1.
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Proof. We have

1

nδn

n∑
i=1

ε̂2iZiZ
′
iIi =

1

nδn

n∑
i=1

(Yi −D′iβ̂)2ZiZ
′
iIi

=
1

nδn

n∑
i=1

(εi −D′i(β̂ − β))2ZiZ
′
iIi

=
1

nδn

n∑
i=1

ε2iZiZ
′
iIi −

2

nδn

n∑
i=1

(Yi −D′iβ)

× ((β̂0 − β0) +Di(β̂1 − β1) + pA(Xi; δn)(β̂2 − β2))ZiZ
′
iIi

+
1

nδn

n∑
i=1

((β̂0 − β0) +Di(β̂1 − β1) + pA(Xi; δn)(β̂2 − β2))2ZiZ
′
iIi

=
1

nδn

n∑
i=1

ε2iZiZ
′
iIi + op(1)Op(1),

where the last equality follows from the result that β̂ − β = op(1) and from application

of Step 3 as in Steps 5 and 6. To show 1
nδn

∑n
i=1 ε

2
iZiZ

′
iIi

p−→ V, it suffices to ver-

ify that the variance of each element of 1
nδn

∑n
i=1 ε

2
iZiZ

′
iIi is o(1). We only verify that

Var( 1
nδn

∑n
i=1 ε

2
i p
A(Xi; δn)2Ii) = o(1). Using the cr-inequality, we have that for some con-

stant c,

Var(
1

nδn

n∑
i=1

ε2i p
A(Xi; δn)2Ii) ≤

1

nδn
δ−1
n E[ε4i Ii]

=
1

nδn
δ−1
n E[(Yi − β0 − β1Di − β2p

A(Xi))
4Ii]

≤ 1

nδn
23cδ−1

n E[(Y 4
i + β4

0 + β4
1Di + β4

2p
A(Xi)

4)Ii]

≤ 1

nδn
23cδ−1

n E[(Y 4
i + β4

0 + β4
1 + β4

2)Ii]

=
1

nδn
23cO(1)

= o(1),

where the second last equality holds by Step 3 under Assumption 2.3 (f). Therefore,

1

nδn

n∑
i=1

ε̂2iZiZ
′
iIi

p−→ V.
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It follows that

nδnΣ̂ = (
1

nδn

n∑
i=1

ZiD
′
iIi)
−1(

1

nδn

n∑
i=1

ε̂2iZiZ
′
iIi)(

1

nδn

n∑
i=1

DiZ
′
iIi)
−1 p−→ S−1

D V(S′D)−1.

Step 8. σ̂−1(β̂1 − β1)
d−→ N (0, 1).

Proof. Let βn = S−1
D δ−1

n E[ZiYiIi]. We then have

1√
nδn

n∑
i=1

E[ZiεiIi] =
√
nδnδ

−1
n E[Zi(Yi −D′β)Ii]

=
√
nδnδ

−1
n E[Zi(Yi −D′iβn + D′i(βn − β))Ii]

=
√
nδnδ

−1
n {E[ZiYiIi]− E[ZiD

′
iIi]βn + E[ZiD

′
iIi](βn − β)}

=
√
nδn{(SD − δ−1

n E[ZiD
′
iIi])S

−1
D δ−1

n E[ZiYiIi]

+ δ−1
n E[ZiD

′
iIi]S

−1
D (δ−1

n E[ZiYiIi]− SY )}

=
√
nδn(O(δn)O(1) +O(1)O(δn))

= O(
√
nδnδn),

where we use Step 3 for the second last equality. Thus, when nδ3
n → 0,

√
nδn(β̂ − β) = (

1

nδn

n∑
i=1

ZiD
′
iIi)
−1 1√

nδn

n∑
i=1

{(ZiεiIi − E[ZiεiIi]) + E[ZiεiIi]}

d−→ N (0, S−1
D V(S′D)−1).

The conclusion then follows from Step 7.
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2.C.4.4 Consistency and Asymptotic Normality of β̂s1 When

Pr(A(Xi) ∈ (0, 1)) = 0

Let Isi = 1{ps(Xi; δn) ∈ (0, 1)}, Ds
i = (1, Di, p

s(Xi; δn))′ and Zsi = (1, Zi, p
s(Xi; δn))′. β̂s

and Σ̂s are given by

β̂s = (
n∑
i=1

Zsi (D
s
i )
′Isi )−1

n∑
i=1

ZsiYiI
s
i .

and

Σ̂s = (

n∑
i=1

Zsi (D
s
i )
′Isi )−1(

n∑
i=1

(ε̂si )
2Zsi (Z

s
i )
′Isi )(

n∑
i=1

Ds
i (Z

s
i )
′Isi )−1,

where ε̂si = Yi − (Ds
i )
′β̂s. It is sufficient to show that

β̂s − β̂ = op(1),

if Sn →∞ and that

√
nδn(β̂s − β̂) = op(1),

nδnΣ̂
s p−→ S−1

D V(S′D)−1

if Assumption 2.5 holds.

Step 1. Let {Vi}∞i=1 be i.i.d. random variables. If E[Vi|Xi] and E[V 2
i |Xi] are bounded on

N(∂Ω∗, δ′) ∩N(X , δ′) for some δ′ > 0, and Sn →∞, then

1

nδn

n∑
i=1

Vip
s(Xi; δn)lIsi −

1

nδn

n∑
i=1

Vip
A(Xi; δn)lIi = op(1)

for l = 0, 1, 2, 3, 4. If, in addition, Assumption 2.5 holds, then

1√
nδn

n∑
i=1

Vip
s(Xi; δn)lIsi −

1√
nδn

n∑
i=1

Vip
A(Xi; δn)lIi = op(1)

for l = 0, 1, 2.
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Proof. We have

1

nδn

n∑
i=1

Vip
s(Xi; δn)lIsi −

1

nδn

n∑
i=1

Vip
A(Xi; δn)lIi

=
1

nδn

n∑
i=1

Vip
s(Xi; δn)l(Isi − Ii) +

1

nδn

n∑
i=1

Vi(p
s(Xi; δn)l − pA(Xi; δn)l)Ii.

We first consider 1
nδn

∑n
i=1 Vi(p

s(Xi; δn)l − pA(Xi; δn)l)Ii. By using the argument in the

proof of Step 3 in Section 2.C.4.3, we have

|E[
1

nδn

n∑
i=1

Vi(p
s(Xi; δn)l − pA(Xi; δn)l)Ii]|

= δ−1
n |E[E[Vi|Xi]E[ps(Xi; δn)l − pA(Xi; δn)l|Xi]Ii]|

≤ δ−1
n E[|E[Vi|Xi]||E[ps(Xi; δn)l − pA(Xi; δn)l|Xi]|Ii]

=

∫ 1

−1

∫
∂Ω∗∩N(X ,δ̃)

|E[Vi|Xi = u+ δnvνΩ∗(u)]|

× |E[ps(u+ δnvνΩ∗(u); δn)l − pA(u+ δnvνΩ∗(u); δn)l]|

× fX(u+ δnvνΩ∗(u))J∂Ω∗
p−1ψΩ∗(u, δnv)dHp−1(u)dv,

where the choice of δ̃ is as in the proof of Step 3 in Section 2.C.4.3. By Lemma 2.B.7, for

l = 0, 1, 2,

|E[
1

nδn

n∑
i=1

Vi(p
s(Xi; δn)l − pA(Xi; δn)l)Ii]|

≤ 1

Sn

∫ 1

−1

∫
∂Ω∗∩N(X ,δ̃)

|E[Vi|Xi = u+ δnvνΩ∗(u)]|

× fX(u+ δnvνΩ∗(u))J∂Ω∗
p−1ψΩ∗(u, δnv)dHp−1(u)dv

= O(S−1
n ).
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Also, by Lemma 2.B.7,

|E[
1

nδn

n∑
i=1

Vi(p
s(Xi; δn)3 − pA(Xi; δn)3)Ii]|

= |δ−1
n E[Vi(p

s(Xi; δn)− pA(Xi; δn))

× (ps(Xi; δn)2 + ps(Xi; δn)pA(Xi; δn) + pA(Xi; δn)2)Ii]|

≤ δ−1
n E[|E[Vi|Xi]||E[(ps(Xi; δn)− pA(Xi; δn))

× (ps(Xi; δn)2 + ps(Xi; δn)pA(Xi; δn) + pA(Xi; δn)2)|Xi]|Ii]

≤ 3δ−1
n E[|E[Vi|Xi]|E[|ps(Xi; δn)− pA(Xi; δn)||Xi]Ii]

=

∫ 1

−1

∫
∂Ω∗∩N(X ,δ̃)

|E[Vi|Xi = u+ δnvνΩ∗(u)]|

× E[|ps(u+ δnvνΩ∗(u); δn)− pA(u+ δnvνΩ∗(u); δn)|]

× fX(u+ δnvνΩ∗(u))J∂Ω∗
p−1ψΩ∗(u, δnv)dHp−1(u)dv

≤ (
1

Snε2
+ ε)O(1)

for every ε > 0. We can make the right-hand side arbitrarily close to zero by taking suffi-

ciently small ε > 0 and sufficiently large Sn, which implies that |E[ 1
nδn

∑n
i=1 Vi(p

s(Xi; δn)3−

pA(Xi; δn)3)Ii]| = o(1) if Sn →∞. Likewise,

|E[
1

nδn

n∑
i=1

Vi(p
s(Xi; δn)4 − pA(Xi; δn)4)Ii]|

= |δ−1
n E[Vi(p

s(Xi; δn)2 + pA(Xi; δn)2)(ps(Xi; δn) + pA(Xi; δn))(ps(Xi; δn)− pA(Xi; δn))Ii]|

≤ δ−1
n E[|E[Vi|Xi]||E[(ps(Xi; δn)2 + pA(Xi; δn)2)

× (ps(Xi; δn) + pA(Xi; δn))(ps(Xi; δn)− pA(Xi; δn))|Xi]|Ii]

≤ 4δ−1
n E[|E[Vi|Xi]|E[|ps(Xi; δn)− pA(Xi; δn)||Xi]Ii]

= o(1).
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As for variance, for l = 0, 1, 2,

Var(
1

nδn

n∑
i=1

Vi(p
s(Xi; δn)l − pA(Xi; δn)l)Ii)

≤ 1

nδn
δ−1
n E[V 2

i (ps(Xi; δn)l − pA(Xi; δn)l)2Ii]

=
1

nδn
δ−1
n E[E[V 2

i |Xi]E[(ps(Xi; δn)l − pA(Xi; δn)l)2|Xi]Ii]

≤ 4

nδnSn
δ−1
n E[E[V 2

i |Xi]Ii]

= O((nδnSn)−1),

and for l = 3, 4,

Var(
1

nδn

n∑
i=1

Vi(p
s(Xi; δn)l − pA(Xi; δn)l)Ii) ≤

1

nδn
δ−1
n E[V 2

i (ps(Xi; δn)l − pA(Xi; δn)l)2Ii]

≤ 1

nδn
δ−1
n E[V 2

i Ii]

= o(1).

Therefore, 1
nδn

∑n
i=1 Vi(p

s(Xi; δn)l − pA(Xi; δn)l)Ii = op(1) if Sn → ∞ for l = 0, 1, 2, 3, 4,

and 1√
nδn

∑n
i=1 Vi(p

s(Xi; δn)l − pA(Xi; δn)l)Ii = op(1) if n−1/2Sn →∞ for l = 0, 1, 2.

We next show that 1
nδn

∑n
i=1 Vip

s(Xi; δn)l(Isi −Ii) = op(1) if Sn →∞ for l ≥ 0. We have

|E[
1

nδn

n∑
i=1

Vip
s(Xi; δn)l(Isi − Ii)]| = δ−1

n |E[Vip
s(Xi; δn)l(Isi − Ii)]|

≤ δ−1
n E[|E[Vi|Xi]||E[ps(Xi; δn)l(Isi − Ii)|Xi]|]

≤ δ−1
n E[|E[Vi|Xi]|E[|Isi − Ii||Xi]].

Since Isi − Ii ≤ 0 with strict inequality only if Ii = 1,

E[|Isi − Ii||Xi] = −E[Isi − Ii|Xi]Ii = (1− E[Isi |Xi])Ii = Pr(ps(Xi; δn) ∈ {0, 1}|Xi)Ii.
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We then have

|E[
1

nδn

n∑
i=1

Vip
s(Xi; δn)l(Isi − Ii)]|

≤ δ−1
n E[|E[Vi|Xi]|Pr(ps(Xi; δn) ∈ {0, 1}|Xi)Ii]

≤ δ−1
n E[|E[Vi|Xi]|((1− pA(Xi; δn))Sn + pA(Xi; δn)Sn)Ii]

≤
∫ 1

−1

∫
∂Ω∗∩N(X ,δ̃)

|E[Vi|Xi = u+ δnvνΩ∗(u)]|{(1− pA(u+ δnvνΩ∗(u); δn))Sn

+ pA(u+ δnvνΩ∗(u); δn)Sn}fX(u+ δnvνΩ∗(u))J∂Ω∗
p−1ψΩ∗(u, δnv)dHp−1(u)dv,

where the second inequality follows from Lemma 2.B.7. Note that for every (u, v) ∈ ∂Ω∗ ∩

N(X , δ̃) × (−1, 1), limδ→0 p
A(u + δvνΩ∗(u); δ) = k(v) ∈ (0, 1) by Step 1 in Section 2.C.4.3.

Since E[Vi|Xi], fX and J∂Ω∗
p−1ψΩ∗ are bounded, by the Bounded Convergence Theorem,

|E[
1

nδn

n∑
i=1

Vip
s(Xi; δn)l(Isi − Ii)]| = o(1)

if Sn →∞.

As for variance,

Var(
1

nδn

n∑
i=1

Vip
s(Xi; δn)l(Isi − Ii)) ≤

1

nδn
δ−1
n E[V 2

i p
s(Xi; δn)2l(Isi − Ii)2]

≤ 1

nδn
δ−1
n E[V 2

i |Isi − Ii|]

=
1

nδn
δ−1
n E[E[V 2

i |Xi]E[|Isi − Ii||Xi]]

= o(1).

Lastly, we show that, for l ≥ 0, 1√
nδn

∑n
i=1 Vip

s(Xi; δn)l(Isi − Ii) = op(1) if Assumption
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2.5 holds. Let ηn = γ logn
Sn

, where γ is the one satisfying Assumption 2.5. We have

|E[
1√
nδn

n∑
i=1

Vip
s(Xi; δn)l(Isi − Ii)]|

≤
√
nδ−1

n E[|E[Vi|Xi]|((1− pA(Xi; δn))Sn + pA(Xi; δn)Sn)Ii]

=

√
nδ−1

n E[|E[Vi|Xi]|((1− pA(Xi; δn))Sn + pA(Xi; δn)Sn)

× 1{pA(Xi; δn) ∈ (0, ηn) ∪ (1− ηn, 1)}]

+

√
nδ−1

n E[|E[Vi|Xi]|((1− pA(Xi; δn))Sn + pA(Xi; δn)Sn)1{pA(Xi; δn) ∈ (ηn, 1− ηn)}]

≤ ( sup
x∈N(∂Ω∗,2δ̃)∩N(X ,2δ̃)

|E[Vi|Xi = x]|)(
√
nδ−1

n Pr(pA(Xi; δn) ∈ (0, ηn) ∪ (1− ηn, 1))

+ 2
√
nδn(1− ηn)Snδ−1

n E[1{pA(Xi; δn) ∈ (ηn, 1− ηn)}]).

By Assumption 2.5,
√
nδ−1

n Pr(pA(Xi; δn) ∈ (0, ηn) ∪ (1 − ηn, 1)) = o(1). For the second

term,

2
√
nδn(1− ηn)Snδ−1

n E[1{pA(Xi; δn) ∈ (ηn, 1− ηn)}] ≤ 2
√
nδn(1− ηn)Snδ−1

n E[Ii]

= 2
√
nδn(1− ηn)SnO(1).

Observe that ηn = γ logn
Sn

= γ logn
n1/2

1
n−1/2Sn

→ 0, since n−1/2Sn → ∞ and logn
n1/2 → 0. Using

the fact that et ≥ 1 + t for every t ∈ R, we have

√
nδn(1− ηn)Sn ≤

√
nδn(e−ηn)Sn

=
√
nδne

−ηnSn

=
√
nδne

−γ logn

=
√
nδnn

−γ

= n1/2−γδ1/2
n

→ 0,
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since γ > 1/2. As for variance,

Var(
1√
nδn

n∑
i=1

Vip
s(Xi; δn)l(Isi − Ii)) ≤ δ−1

n E[V 2
i p

s(Xi; δn)2l(Isi − Ii)2]

≤ δ−1
n E[E[V 2

i |Xi]E[|Isi − Ii||Xi]Ii]

= o(1).

We have

β̂s − β̂

= (
1

nδn

n∑
i=1

Zsi (D
s
i )
′Isi )−1 1

nδn

n∑
i=1

ZsiYiI
s
i − (

1

nδn

n∑
i=1

ZiD
′
iIi)
−1 1

nδn

n∑
i=1

ZiYiIi

= (
1

nδn

n∑
i=1

Zsi (D
s
i )
′Isi )−1(

1

nδn

n∑
i=1

ZsiYiI
s
i −

1

nδn

n∑
i=1

ZiYiIi)− (
1

nδn

n∑
i=1

Zsi (D
s
i )
′Isi )−1

× (
1

nδn

n∑
i=1

Zsi (D
s
i )
′Isi −

1

nδn

n∑
i=1

ZiD
′
iIi)(

1

nδn

n∑
i=1

ZiD
′
iIi)
−1 1

nδn

n∑
i=1

ZiYiIi.

By Step 1, β̂s − β̂ = op(1) if Sn →∞, and
√
nδn(β̂s − β̂) = op(1) if Assumption 2.5 holds.

By proceeding as in Step 7 in Section 2.C.4.3, we have

1

nδn

n∑
i=1

(ε̂si )
2Zsi (Z

s
i )
′Isi =

1

nδn

n∑
i=1

(εsi )
2Zsi (Z

s
i )
′Isi + op(1),

where εsi = Yi − (Ds
i )
′β. Then, by Step 1,

1

nδn

n∑
i=1

(ε̂si )
2Zsi (Z

s
i )
′Isi −

1

nδn

n∑
i=1

ε2iZiZ
′
iIi

=
1

nδn

n∑
i=1

(Y 2
i − 2Yi(D

s
i )
′β + β′Ds

i (D
s
i )
′β)Zsi (Z

s
i )
′Isi

− 1

nδn

n∑
i=1

(Y 2
i − 2YiD

′
iβ + β′DiD

′
iβ)ZiZ

′
iIi + op(1)

= op(1)
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so that
1

nδn

n∑
i=1

(ε̂si )
2Zsi (Z

s
i )
′Isi

p−→ V.

Also, 1
nδn

∑n
i=1 Zsi (D

s
i )
′Isi

p−→ SD by using Step 1. The conclusion then follows.

2.C.5 Proof of Proposition 2.A.1

Since A is a Lp-measurable and bounded function, A is locally integrable with respect to

the Lebesgue measure, i.e., for every ball B ⊂ Rp,
∫
B A(x)dx exists. An application of the

Lebesgue differentiation theorem (see e.g. Theorem 1.4 in Chapter 3 of Stein and Shakarchi

(2005)) to the function A shows that

lim
δ→0

∫
B(x,δ)A(x∗)dx∗∫

B(x,δ) dx
∗ = A(x)

for almost every x ∈ Rp.

2.C.6 Proof of Proposition 2.A.2

With change of variables u = x∗−x
δ , we have

pA(x; δ) =

∫
B(x,δ)A(x∗)dx∗∫

B(x,δ) dx
∗

=
δp
∫
B(0,1)A(x+ δu)du

δp
∫
B(0,1) du

=

∫
∪q∈QUx,q A(x+ δu)du+

∫
B(0,1)\∪q∈QUx,q A(x+ δu)du∫

B(0,1) du

=

∑
q∈Q

∫
Ux,q A(x+ δu)du∫
B(0,1) du

,

where the last equality follows from the assumption that Lp(∪q∈QUx,q) = Lp(B(0, 1)). By

the definition of Ux,q, for each q ∈ Q, limδ→0A(x + δu) = q for any u ∈ Ux,q. By the
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Dominated Convergence Theorem,

pA(x) = lim
δ→0

pA(x; δ)

=

∑
q∈Q qLp(Ux,q)
Lp(B(0, 1))

.

The numerator exists, since q ≤ 1 for all q ∈ Q and
∑

q∈Q Lp(Ux,q) = Lp(B(0, 1)).

2.C.7 Proof of Corollary 2.A.1

1. Suppose that A is continuous at x ∈ X , and let q = A(x). Then, by definition,

Ux,q = B(0, 1). By Proposition 2.A.2, pA(x) exists, and pA(x) = q.

2. Pick any x ∈ int(Xq). A is continuous at x, since there exists δ > 0 such that

B(x, δ) ⊂ Xq by the definition of interior. By the previous result, pA(x) exists, and

pA(x) = q.

3. Let N be the neighborhood of x on which f is continuously differentiable. By the

mean value theorem, for any sufficiently small δ > 0,

f(x+ δu) = f(x) +∇f(x̃δ) · δu

= ∇f(x̃δ) · δu

for some x̃δ which is on the line segment connecting x and x + δu. Since x̃δ → x as

δ → 0 and ∇f is continuous on N , ∇f(x̃δ) · u → ∇f(x) · u as δ → 0. Therefore, if

∇f(x) · u > 0, then f(x+ δu) = ∇f(x̃δ) · δu > 0 for any sufficiently small δ > 0, and

if ∇f(x) · u < 0, then f(x + δu) = ∇f(x̃δ) · δu < 0 for any sufficiently small δ > 0.

We then have

U+
x ≡ {u ∈ B(0, 1) : ∇f(x) · u > 0} ⊂ Ux,q1

U−x ≡ {u ∈ B(0, 1) : ∇f(x) · u < 0} ⊂ Ux,q2 .

Let V be the Lebesgue measure of a half p-dimensional unit ball. Since V = Lp(U+
x ) ≤
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Lp(Ux,q1), V = Lp(U−x ) ≤ Lp(Ux,q2), and Lp(Ux,q1) + Lp(Ux,q2) ≤ Lp(B(0, 1)) = 2V ,

it follows that Lp(Ux,q1) = Lp(Ux,q2) = V . By Proposition 2.A.2, pA(x) exists, and

pA(x) = 1
2(q1 + q2).

4. We have that U0,q1 = {(u1, u2)′ ∈ B(0, 1) : u1 ≤ 0 or u2 ≤ 0} and U0,q2 =

{(u1, u2)′ ∈ B(0, 1) : u1 > 0, u2 > 0}. By Proposition 2.A.2, pA(x) exists, and

pA(x) =
q1L2(U0,q1 )+q2L2(U0,q2 )

L2(B(0,1))
= 3

4q1 + 1
4q2.

2.C.8 Proof of Proposition 2.A.3

We can prove Part (a) using the same argument in the proof of Proposition 2.1 (a).

For Part (b), suppose to the contrary that there exists xd ∈ X Sd such that Lpc({xc ∈

X Sc (xd) : pA(xd, xc) ∈ {0, 1}}) > 0. Without loss of generality, assume Lpc({xc ∈ X Sc (xd) :

pA(xd, xc) = 1}) > 0. The proof proceeds in five steps.

Step 1. Lpc(X Sc (xd) ∩ Xc,1(xd)) > 0.

Step 2. X Sc (xd) ∩ int(Xc,1(xd)) 6= ∅.

Step 3. pA(xd, xc) = 1 for any xc ∈ int(Xc,1(xd)).

Step 4. For every x∗c ∈ X Sc (xd) ∩ int(Xc,1(xd)), there exists δ > 0 such that B(x∗c , δ) ⊂

X Sc (xd) ∩ int(Xc,1(xd)).

Step 5. E[Y1i − Y0i|Xi ∈ S] is not identified.

Following the argument in the proof of Proposition 2.1 (b), we can prove Steps 1–3. Once

Step 4 is established, we prove Step 5 by following the proof of Step 4 in Section 2.C.1 with

B(x∗c , δ) and B(x∗c , ε) in place of B(x∗, δ) and B(x∗, ε), respectively, using the fact that

Pr(Xci ∈ B(x∗c , ε)|Xdi = xd) > 0 by the definition of support. Here, we provide the proof of

Step 4.

Proof of Step 4. Pick an x∗c ∈ X Sc (xd) ∩ int(Xc,1). Then, x∗ = (xd, x
∗
c) ∈ S. Since

S is open relative to X , there exists an open set U ∈ Rp such that S = U ∩ X . This

implies that for any sufficiently small δ > 0, B(x∗, δ) ∩ X ⊂ U ∩ X = S. It then
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follows that {xc ∈ Rpc : (xd, xc) ∈ B(x∗, δ) ∩ X} ⊂ {xc ∈ Rpc : (xd, xc) ∈ S}, equiv-

alently, B(x∗c , δ) ∩ Xc(xd) ⊂ X Sc (xd). By choosing a sufficiently small δ > 0 so that

B(x∗c , δ) ⊂ int(Xc,1(xd)) ⊂ Xc(xd), we have B(x∗c , δ) ⊂ X Sc (xd) ∩ int(Xc,1(xd)).

2.C.9 Proof of Theorem 2.A.1

The proof is analogous to the proof of Theorem 2.1. The only difference is that, when

we prove the convergence of expectations, we show the convergence of the expectations

conditional on Xdi, and then take the expectations over Xdi.

2.D Machine Learning Simulation: Details

Parameter Choice. For the variance-covariance matrix Σ ofXi, we first create a 100×100

symmetric matrix V such that the diagonal elements are one, Vij is nonzero and equal to

Vji for (i, j) ∈ {2, 3, 4, 5, 6}×{35, 66, 78}, and everything else is zero. We draw values from

Unif(−0.5, 0.5) independently for the nonzero off-diagonal elements of V. We then create

matrix Σ = V ×V, which is a positive semidefinite matrix.

For α0 and α1, we first draw α̃0j , j = 51, ..., 100, from Unif(−100, 100) independently

across j, and draw α̃1j , j = 1, ..., 100, from Unif(−150, 200) independently across j. We

then set α̃0j = α̃1j for j = 1, ..., 50, and calculate α0 and α1 by normalizing α̃0 and α̃1 so

that Var(X ′iα0) = Var(X ′iα1) = 1.

Training of Prediction Model. We construct τpred using an independent sample

{(Ỹi, X̃i, D̃i, Z̃i)}ñi=1 of size ñ = 2, 000. The distribution of (Ỹi, X̃i, D̃i, Z̃i) is the same as

that of (Yi, Xi, Di, Zi) except (1) that Ỹi(1) is generated as Ỹi(1) = Ỹi(0) + 0.5X̃ ′iα1 + 0.5ε1i,

where ε1i ∼ N (0, 1) and (2) that Z̃i ∼ Bernoulli(0.5). This can be viewed as data from a

past randomized experiment conducted to construct the algorithm.

We then use random forests separately for the subsamples with Z̃i = 1 and Z̃i = 0 to

predict Ỹi from X̃i. Let µz(x) be the trained prediction model. Set τpred(x) = µ1(x)−µ0(x).

We generate the sample {(Ỹi, X̃i, D̃i, Z̃i)}ñi=1 and construct τpred only once, and we use it
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for all of the 1, 000 simulation samples. The distribution of the sample {(Yi, Xi, Di, Zi)}ni=1

is thus held fixed for all simulations.

When training µz, we first randomly split the sample {(Ỹi, X̃i, D̃i, Z̃i)}ñi=1 into train

(80%) and test datasets (20%). We use random forests on the training sample to obtain the

prediction model µz and validate its performance on the test sample. The trained algorithm

has an accuracy of 80.5% on the test data.

2.E Empirical Policy Application: Details

2.E.1 Hospital Cost Data

We use publicly available Healthcare Cost Report Information System (HCRIS) data, to

project funding eligibility and amounts for all hospitals in the dataset. This data set contains

information on various hospital characteristics including utilization, number of employees,

medicare cost data and financial statement data. We use the methodology detailed in the

CARES Act website to project funding based on 2018 financial year cost reports.

The data is available from financial year 1996 to 2019. As the coverage is higher for 2018

(compared to 2019), we utilize the data corresponding to the 2018 financial year. Hospitals

are uniquely identified in a financial year by their CMS (Center for Medicaid and Medicare

Services) Certification Number. We have data for 4,705 providers for the 2018 financial year.

We focus on 4,648 acute care and critical access hospitals that are either located in one of

the 50 states or Washington DC.

Disproportionate patient percentage. Disproportionate patient percentage is equal to

the percentage of Medicare inpatient days attributable to patients eligible for both Medi-

care Part A and Supplemental Security Income (SSI) summed with the percentage of total

inpatient days attributable to patients eligible for Medicaid but not Medicare Part A.36 In

the data, this variable is missing for 1560 hospitals. We impute the disproportionate patient

percentage to 0 when it is missing.

36. For the precise definition, see https://www.cms.gov/Medicare/
Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/dsh.
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Uncompensated care per bed. Cost of uncompensated care refers to the care provided

by the hospital for which no compensation was received from the patient or the insurer. It

is the sum of a hospitalâĂŹs bad debt and the financial assistance it provides.37 The cost of

uncompensated care is missing for 86 hospitals, which we impute to 0. We divide the cost

of uncompensated care by the number of beds in the hospital to obtain the cost per bed.

The data on bed count is missing for 15 hospitals, which we drop from the analysis, leaving

us with 4,633 hospitals in 2,473 counties.

Profit Margin. Hospital profit margins are indicative of the financial health of the hos-

pitals. We calculate profit margins as the ratio of net income to total revenue where total

revenue is the sum of net patient revenue and total other income. After the calculation,

profit margins are missing for 92 hospitals, which we impute to 0.

Funding. We calculate the projected funding using the formula on the CARES ACT

website. Hospitals that do not qualify on any of the three dimensions are not given any

funding. Each eligible hospital is assigned an individual facility score, which is calculated as

the product of disproportionate patient percentage and number of beds in that hospital. We

calculate cumulative facility score as the sum of all individual facility scores in the dataset.

Each hospital receives a share of $10 billion, where the share is determined by the ratio

of individual facility score of that hospital to the cumulative facility score. The amount

of funding received by hospitals is bounded below at $5 million and capped above at $50

million.

2.E.2 Hospital Utilization Data

We use the publicly available COVID-19 Reported Patient Impact and Hospital Capacity

by Facility dataset for our outcome variables. This provides facility level data on hospital

utilization aggregated on a weekly basis, from July 31st onwards. These reports are derived

from two main sources – (1) HHS TeleTracking and (2) reporting provided directly to HHS

37. The precise definition can be found at https://www.aha.org/fact-sheets/
2020-01-06-fact-sheet-uncompensated-hospital-care-cost.
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Protect by state/territorial health departments on behalf of health care facilities.38

The hospitals are uniquely identified for a given collection week (which goes from Friday

to Thursday) by their CMS Certification number. All hospitals that are registered with

CMS by June 1st 2020 are included in the population. We merge the hospital cost report

data with the utilization data using the CMS certification number. According to the terms

and conditions of the CARES Health Care Act, the recipients may use the relief funds only

to “prevent, prepare for, and respond to coronavirus” and for “health care related expenses

or lost revenues that are attributable to coronavirus”. Therefore, for our analysis we focus

on 4 outcomes that were directly affected by COVID-19, for the week spanning July 31st to

August 6th 2020. The outcome measures are described below.39

1. Total reports of patients currently hospitalized in an adult inpatient bed who have

laboratory-confirmed or suspected COVID-19, including those in observation beds

reported during the 7-day period.

2. Total reports of patients currently hospitalized in an adult inpatient bed who have

laboratory-confirmed COVID-19 or influenza, including those in observation beds. In-

cluding patients who have both laboratory-confirmed COVID-19 and laboratory con-

firmed influenza during the 7-day period.

3. Total reports of patients currently hospitalized in a designated adult ICU bed who

have suspected or laboratory-confirmed COVID-19.

4. Total reports of patients currently hospitalized in a designated adult ICU bed who

have laboratory-confirmed COVID-19 or influenza, including patients who have both

laboratory-confirmed COVID-19 and laboratory-confirmed influenza.40

38. Source: https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/
anag-cw7u.

39. We conduct sanity checks and impute observations to missing if they fail our checks. For example, we
impute the value # Confirmed/ Suspected COVID Patients and # Confirmed COVID Patients to missing
when the latter is greater than the former. # Confirmed/ Suspected COVID Patients should be greater
than or equal to # Confirmed COVID Patients as the former includes the latter. Similarly, we impute #
Confirmed/ Suspected COVID Patients in ICU and # Confirmed COVID Patients in ICU to be missing
when the latter is greater than the former.

40. In the dataset, when the values of the 7 day sum are reported to be less than 4, they are replaced with
-999,999. We recode these values to be missing. The results in Table 4 remain almost the same even if we
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2.E.3 Computing Fixed-Bandwidth Approximate Propensity Score

As the three determinants of funding eligibility are continuous variables, we can think of

this setting as a multidimensional regression discontinuity design and a suitable setting to

apply our method. In this setting, Xi are disproportionate patient percentage, uncompen-

sated care per bed and profit margin. Funding eligibility (Zi) is determined algorithmi-

cally using these three dimensions. Di is the amount of funding received by hospital i,

which depends on funding eligibility status Zi, number of beds in the hospital, and dis-

proportionate patient percentage. Before calculating fixed-bandwidth APS, we normalize

each characteristic of Xi to have mean 0 and variance 1. For each hospital and every δ ∈

{0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5}, we draw 10,000 times from a δ-ball around the nor-

malized covariate space and calculate fixed-bandwidth APS by averaging funding eligibility

Zi over these draws.

2.E.4 Additional Empirical Results

impute the suppressed values (coded as -999,999) with 0s. Results are available upon request.
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Figure 2.7: Fixed-bandwidth APS Estimation with Varying Simulations S

102 103 104 105

# Simulations (S)

0.0

0.2

0.4

0.6

0.8

1.0

Ap
pr

ox
im

at
e 

Pr
op

en
si

ty
 S

co
re

Approximate Propensity Score by # of Simulations ( = 0.5)

Notes: The above figure plots the fixed-bandwidth APS estimates for 10 randomly selected hospitals along the
eligibility margin for varying numbers of simulations S. Each line represents a different hospital. The dotted line at
104 indicates the number of simulations we use for our main analysis.
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Table 2.5: Differential Attrition

Our Method with Approximate Propensity Score Controls
Ineligible No
HospitalsControls δ =

0.01
δ =

0.025
δ =
0.05

δ =
0.075

δ =
0.1

δ =
0.25

δ =
0.5

(1) (2) (3) (4) (5) (6) (7) (8) (9)

#Confirmed/Suspected .745 38.19*** −15.51 −24.80 −44.34 −57.95 −40.34 2.05 −4.08
Covid Patients (8.55) (85.67) (70.81) (70.09) (63.06) (48.58) (22.20) (15.67)

N=3532 N=73 N=195 N=392 N=547 N=719 N=1389 N=1947
#Confirmed Covid Patients .754 33.97*** 0.85 −30.81 21.32 1.96 −0.39 −1.28 −8.25

(7.44) (73.28) (55.22) (33.46) (29.41) (25.14) (15.75) (12.56)
N=3558 N=70 N=191 N=385 N=539 N=709 N=1366 N=1923

#Confirmed/Suspected .728 13.18*** 13.68 9.54 5.71 −0.83 2.34 −0.46 −4.21
Covid Patients in ICU (2.74) (23.41) (17.74) (11.91) (10.68) (9.01) (5.78) (4.64)

N=3445 N=72 N=186 N=374 N=520 N=678 N=1314 N=1846
#Confirmed Covid Patients .744 12.16*** 7.97 −1.54 2.79 0.65 1.87 −1.94 −4.66
in ICU (2.58) (25.63) (18.89) (11.25) (9.97) (8.52) (5.57) (4.43)

N=3503 N=67 N=181 N=370 N=514 N=671 N=1321 N=1868

Notes: This table reports differential safety net eligibility effects on the availability of outcome data at the hospital
level. Column 1 presents the average of the availability indicators of the outcome variables for the ineligible hospitals.
In column 2, we regress the availability indicator on dummy for safety net eligibility without any controls. In columns
3-9, we run this regression controlling for the Approximate Propensity Score with different values of bandwidth δ on
the sample with nondegenerate Approximate Propensity Score. All Approximate Propensity Scores are computed by
averaging 10,000 simulation draws. The outcome variables are the 7 day totals for the week spanning July 31st, 2020
to August 6th, 2020. Confirmed or Suspected COVID patients refer to the sum of patients in inpatient beds with
lab-confirmed/suspected COVID-19. Confirmed COVID patients refer to the sum of patients in inpatient beds with
lab-confirmed COVID-19, including those with both lab-confirmed COVID-19 and influenza. Inpatient bed totals also
include observation beds. Similarly, Confirmed/Suspected COVID patients in ICU refer to the sum of patients in ICU
beds with lab-confirmed or suspected COVID-19. Confirmed COVID patients in ICU refers to the sum of patients in
ICU beds with lab-confirmed COVID-19, including those with both lab-confirmed COVID-19 and influenza. Robust
standard errors are reported in parenthesis. */**/*** indicate p < 0.10/0.05/0.01.
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